940 resultados para Ultrasonic atomization
Resumo:
单宁是一种典型的有毒难降解污染物,在制革、造纸、制药、印染等行业废水中广泛存在,对水环境造成污染并且影响废水生物处理效果。本研究针对含单宁废水生物处理效率低、较高浓度时微生物受抑制且污泥容易膨胀等问题,采用超声和磁粉来强化含单宁废水生物处理,研究超声和磁粉对微生物活性、污染物去除及污泥沉降性能的影响,并对其作用机理进行了分析和探讨。 研究结果表明,活性污泥系统中单宁酸容积负荷可以达到1.8kgCOD/(m3·d),单宁酸和COD去除率分别达到85.2%和79.6%,但如果负荷进一步增大则微生物活性迅速降低。系统在pH 5~8、温度20~35℃、DO>1 mg/L的条件下具有较好的单宁酸降解效果和处理稳定性。单宁降解动力学参数为:μmax =0.208h-1;Ks=226mg/L;Ki=522mg/L;kd=0.0092h-1;Y =0.594。 磁粉对系统处理效果和污泥沉降性能有一定的促进作用,且效果要优于外磁场。适宜的磁粉粒径和投加量分别为0.05~0.15mm和1.0g/L,COD去除率比对照系统提高6.4%,SVI降低28.6%,污泥絮体结构紧密。磁粉强化主要是通过其对污泥菌胶团的凝聚、吸附作用以及对微生物活性的强化作用实现。 在适当强度(0.4W/cm2)和辐照时间(20min)的超声作用下污泥絮体和细胞膜通透性增大,酶分泌也增多,系统的COD去除率比对照提高了8.8%,单宁酶酶活提高了11%。但超声也使污泥絮体结构松散,沉降性能下降,SVI比对照系统升高9.3%。 由于污泥流失加剧导致污泥浓度相对较低,声磁联合强化系统相对于磁粉强化系统其处理效果并没有提高。但相对于单纯活性污泥系统,声磁联合作用下系统处理效果、污泥沉降性能以及系统运行稳定性都得到明显改善。本研究为难降解废水的生物处理提供了一个新的思路。 Tannins are typical refractory and toxic pollutants that commonly exist in wastewater from dye, medicine, paper and leather industries and cause many problems associated with environmental pollution and biological treatment of wastewater. Biological treatment efficiency of tannin-containing wastewater is usually low owing to its biological toxicity and low biodegradability, microbes are usually inhibited under high tannin concentration and sludge bulking frequently occurs. In this study, ultrasound and magnetic powder were used to improve the biological treatment performance of simulated tannic acid-containing wastewater. The effects of ultrasonic irradiation and magnetic powder on microbial activity, tannic acid degradation rate and sludge sedimentation were investigated. The augmentation mechanisms were analyzed and discussed. The experimental results showed that the microbes were prominently inhibited under high tannic acid concentration, but moderate degradation efficiency can be maintained under a tannic acid load of up to 1.8kgCOD/(m3·d), with the tannic acid degradation and COD removal percentage of 85.2% and 79.6% respectively. The highest degradation rates and treatment stability were achieved at pH range of 5~8, temperature range of 20~35℃ and DO concentration of above 1mg/L. The kinetic parameters were estimated, including: μmax =0.208h-1;Ks=226mg/L;Ki=522mg/L;kd=0.0092h-1;Y =0.594. The microbial activity, tannic acid degradation rate and sludge sedimentation were improved by adding Fe3O4 magnetic powder, and the augmentation performance was better than external magnetic field. The appropriate particle size and dosage of magnetic powder were found to be 0.05~0.15mm and 1.0g/L, respectively, under which the COD removal percentage was improved by 6.4% and SVI value decreased by 28.6%, and compact floc structure was observed. This was mainly caused by the flocculation and adsorption effects of magnetic powder against sludge floc and the stimulation of microbial activity under appropriate magnetic field. Under appropriate ultrasonic irradiation (ultrasonic intensity 0.4W/cm2, ultrasonic irradiation time 20min), the permeability of floc and cell membrane are improved, transfer of substrate and oxygen were reinforced; meanwhile, more enzyme were produced by microbes under the slight damage caused by ultrasound. However, the floc structure became loose under ultrasonic irradiation, leading to relatively poor sedimentation, with the SVI value 9.3% higher than the control system. Although the magnetic powder-ultrasonic irradiation combined augmentation system showed no improvement in treatment performance compared with sole magnetic augmentation system owing to its relatively low sludge concentration, it guaranteed the stable operation of system, meanwhile the tannic acid degradation and sludge sedimentation were significantly improved compared with sole activated sludge system. This study gives a new idea for biological treatment of refractory wastewater.
Resumo:
The isoflavonoids in Radix astragali were determined and identified by HPLC-photodiode array detection-MS after extraction employing matrix solid-phase dispersion (MSPD). As a new sample preparation method for R. astragali, the MSPD procedure was optimized, validated and compared with conventional methods including ultrasonic and Soxhlet extraction. The amounts of two major components in this herb, formononetin (6) and ononin (2), were determined based on their authentic standards. Four major isoflavonoids, formononetin (6), ononin (2), calycosin (5) and its glycoside (1), and three minor isoflavonoids, (6aR,11aR)-3-hydroxy-9, 10-dimethoxypterocarpan (7), its glycoside (3), and (3R)-7,2'-dihydroxy-3',4'-dimethoxyisoflavone-7-O-beta-D-glycoside (4), were identified based on their characteristic two-band UV spectra and [M + H](+), [aglycone + H](+) and [A1 + H](+) ions, etc. The combined MSPD and HPLC-DAD-MS method was suitable for quantitative and qualitative determination of the isoflavonoids in R. astragali. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Turnover of soil organic matter (SOM) is coupled to the cycling of nutrients in soil through the activity of soil microorganisms. Biological availability of organic substrate in soil is related to the chemical quality of the organic material and to its degree of physical protection. SOM fractions can provide information on the turnover of organic matter (OM), provided the fractions can be related to functional or structural components in soil. Ultrasonication is commonly used to disrupt the soil structure prior to physical fractionation according to particle size, but may cause redistribution of OM among size fractions. The presence of mineral particles in size fractions can complicate estimations of OM turnover time within the fractions. Densiometric separation allows one to physically separate OM found within a specific size class from the heavier-density mineral particles. Nutrient contents and mineralization potential were determined for discrete size/density OM fractions isolated from within the macroaggregate structure of cultivated grassland soils. Eighteen percent of the total soil C and 25% of the total soil N in no-till soil was associated with fine-silt size particles having a density of 2.07-2.21 g/cm3 isolated from inside macroaggregates (enriched labile fraction or ELF). The amount of C and N sequestered in the ELF fraction decreased as the intensity of tillage increased. The specific rate of mineralization (mug net mineral N/mug total N in the fraction) for macroaggregate-derived ELF was not different for the three tillage treatments but was greater than for intact macroaggregates. The methods described here have improved our ability to quantitatively estimate SOM fractions, which in turn has increased our understanding of SOM dynamics in cultivated grassland systems.
Resumo:
The prevention and control of tomato plant diseases were conducted in protective ground using Vc fermentation waste residue treated by enzymolysis and ultrasonic wave. The results showed that the seedlings planted for 3 weeks on the protective ground soil continuously cropped tomato plant for 9 years and fertilized 75, 150 and 300 kg·hm -2 grew well. Their biomass were increased by 123%, 164% and 182%, and the disease incidence rates were decreased by 59%, 78% and 85%, respectively. Under application of 300 kg·hm -2 Vc fermentation waste residue, the products of tomato grown for 10 weeks on the soil continuously cropped tomato plant for 9, 6 and 2 years were increased by 60%, 43% and 14%, respectively, and the disease incidence rates were all decreased by 50%.
Resumo:
A sol-gel process has been developed to prepare polyimide (PI)/Al2O3 hybrid films with different contents of Al2O3 based on pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) as monomers. FESEM and TEM images indicated that Al2O3 particles are relatively well dispersed in the polyimide matrix after ultrasonic treatment of the sol from aluminum isopropoxide and thermal imidization of the gel film. The dimensional stability, thermal stability, mechanical properties of hybrid PI films were improved obviously by an addition of adequate Al2O3 content, whereas, dielectric property and the elongation at break decreased with the increase of Al2O3 content. Surprisingly, the corona-resistance property of hybrid film was improved greatly with increasing Al2O3 content within certain range as compared with pure PI film.
Resumo:
Uniform lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd. Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO(4) (Ln = Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature.
Resumo:
In this paper, a rapid, high efficient, sensitive and inexpensive approach based on a combination of simple ultrasonic extract and capillary electrophoresis (CE) separation with electrochemical detection (ED), is described to identify herbs by comparing their CE-ED profiles (namely, CE-ED electropherograms). The proposed method takes advantage of ultrasmall sample volume, low consumption of organic solvent, simple sample pretreatment and easy cleanup procedure. It was applied to analyze the CE-ED profiles of stems of herb Acanthopanax senticosus (Rupr. Et Maxim.) Harms from different sources and different parts (roots, rhizomes, stems and leaves) of this herb. By comparing peak number, peak height and peak height ratio, we found that the CE-ED profiles showed big differences for the herbs from the different sources and the different parts of this herb. In addition, the distribution of bioactive compounds (isofraxidin, rutin and chlorogenic acid) in the different parts of this herb and their content variations affected by the source were studied with the CE-ED method. Based on their own unique CE-ED profiles, these herbs from the different sources and the different parts of this herb could be easily distinguished. Therefore, the proposed approach could be used as a rapid, high efficient and sensitive method for the identification of herbal medicines.
Resumo:
YVO4 nanocrystals doped with 10.0 mol% Eu3+ have been synthesized from an aqueous solution of ( Y, Eu)( NO3) (3) and NH4VO3 with or without ultrasonic irradiation. The ultrasonic irradiation has a strong effect on the morphology of the YVO4: Eu particles. The spindle-like particles with an equatorial diameter of 90 - 150 nm and a length of 250 - 300 nm could be obtained with ultrasonic irradiation, whereas only nanoparticles were produced without ultrasonic irradiation. The photoluminescence intensity of YVO4: Eu of the spindle-like particles was largely improved compared with that of the nanoparticles. The possible formation mechanism of the spindle-like particles of YVO4: Eu with the application of ultrasonic irradiation was discussed in this paper.
Resumo:
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.
Resumo:
A single-crystalline EuF3 nanoflower with a novel three-dimensional (3D) nanostructure has been successfully synthesized via a facile, fast, efficient, and mild ultrasonic irradiation solution route employing the reaction of Eu(NO3)(3) and KBF4 under ambient conditions without any template or surfactant. The ultrasonic irradiation plays an important role and is necessary for the synthesis of EuF3 with the complex structure. The formation mechanism of this complex nanostructure is proposed in this paper. No template or surfactant is used in this method, which avoids the subsequent complicated workup for the removal of the template or surfactant. Furthermore, a substantial reduction in the reaction time as well as the reaction temperature is observed compared with the hydrothermal process.
Resumo:
Nanocomposites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and multi-walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer-coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen.
Resumo:
The determination of Nb and Ta in Nb-Ta minerals was accomplished by slurry nebulization inductively coupled plasma optical emission spectrometry (ICP-OES), using a clog-free V-groove ceramic nebulizer. Samples were first wet-ground to appropriate particle sizes with narrow size distribution and 90% of the particles in the slurry were smaller than 2.32 mu m in diameter. Subsamples were then dispersed in pH 9 aqueous solutions, and agitated in an ultrasonic bath for 15 min prior to analysis. Due to the lack of slurry standards matching well with the samples, calibration was simply carried out using aqueous solution standards. Results were compared with those obtained from a conventional fusion decomposition procedure and acid digestion procedures and a good agreement between the measured and referred values was obtained. The technique provided a good alternative for the rapid determination of Nb and/or Ta in their corresponding minerals.
Resumo:
Matrix effects arising from ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine in inductively coupled plasma mass spectrometry have been studied. Addition of ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine into solution has an enhancement effect on the signal intensity of analyte with ionization potential between 9 and 11 eV. The ethylenediamine and triethanolamine have higher enhancement effect on the signal intensity of Hg than that of ethanol, propanol, glycerol and acetic acid. Addition of ethylenediamine and triethanolamine into solution has a suppression effect on the signal intensity of Ph and Sr. The mechanism of the enhancement or suppression was investigated. The signal enhancement of Hg in the presence of ethylenediamine and triethanolamine is not caused by improved degree of ionization of Hg and nebulization efficiency. The suppression effects of Ph and Sr in the presence of ethylenediamine and triethanolamine are due to decrease of atomization efficiency of these elements. A method for the determination of Hg in the biological standard samples Ly ICP-MS was developed.