957 resultados para Two fluid model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Albitization is a common process during which hydrothermal fluids convert plagioclase and/or K-feldspar into nearly pure albite; however, its specific mechanism in granitoids is not well understood. The c. 1700 Ma A-type metaluminous ferroan granites in the Khetri complex of Rajasthan, NW India, have been albitized to a large extent by two metasomatic fronts, an initial transformation of oligoclase to nearly pure albite and a subsequent replacement of microcline by albite, with sharp contacts between the microcline-bearing and microcline-free zones. Albitization has bleached the original pinkish grey granite and turned it white. The mineralogical changes include transformation of oligoclase (similar to An(12)) and microcline (similar to Or(95)) to almost pure albite (similar to An(0 center dot 5-2)), amphibole from potassian ferropargasite (X-Fe 0 center dot 84-0 center dot 86) to potassic hastingsite (X-Fe 0 center dot 88-0 center dot 97) and actinolite (X-Fe 0 center dot 32-0 center dot 67), and biotite from annite (X-Fe 0 center dot 71-0 center dot 74) to annite (X-Fe 0 center dot 90-0 center dot 91). Whole-rock isocon diagrams show that, during albitization, the granites experienced major hydration, slight gain in Si and major gain in Na, whereas K, Mg, Fe and Ca were lost along with Rb, Ba, Sr, Zn, light rare earth elements and U. Whole-rock Sm-Nd isotope data plot on an apparent isochron of 1419 +/- 98 Ma and reveal significant disturbance and at least partial resetting of the intrusion age. Severe scatter in the whole-rock Rb-Sr isochron plot reflects the extreme Rb loss in the completely albitized samples, effectively freezing Sr-87/Sr-86 ratios in the albite granites at very high values (0 center dot 725-0 center dot 735). This indicates either infiltration of highly radiogenic Sr from the country rock or, more likely, radiogenic ingrowth during a considerable time lag (estimated to be at least 300 Myr) between original intrusion and albitization. The albitization took place at similar to 350-400 degrees C. It was caused by the infiltration of an ascending hydrothermal fluid that had acquired high Na/K and Na/Ca ratios during migration through metamorphic rocks at even lower temperatures in the periphery of the plutons. Oxygen isotope ratios increase from delta O-18 = 7 parts per thousand in the original granite to values of 9-10 parts per thousand in completely albitized samples, suggesting that the fluid had equilibrated with surrounding metamorphosed crust. A metasomatic model, using chromatographic theory of fluid infiltration, explains the process for generating the observed zonation in terms of a leading metasomatic front where oligoclase of the original granite is converted to albite, and a second, trailing front where microcline is also converted to albite. The temperature gradients driving the fluid infiltration may have been produced by the high heat production of the granites themselves. The confinement of the albitized granites along the NE-SW-trending Khetri lineament and the pervasive nature of the albitization suggest that the albitizing fluids possibly originated during reactivation of the lineament. More generally, steady-state temperature gradients induced by the high internal heat production of A-type granites may provide the driving force for similar metasomatic and ore-forming processes in other highly enriched granitoid bodies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many research areas (such as public health, environmental contamination, and others) one deals with the necessity of using data to infer whether some proportion (%) of a population of interest is (or one wants it to be) below and/or over some threshold, through the computation of tolerance interval. The idea is, once a threshold is given, one computes the tolerance interval or limit (which might be one or two - sided bounded) and then to check if it satisfies the given threshold. Since in this work we deal with the computation of one - sided tolerance interval, for the two-sided case we recomend, for instance, Krishnamoorthy and Mathew [5]. Krishnamoorthy and Mathew [4] performed the computation of upper tolerance limit in balanced and unbalanced one-way random effects models, whereas Fonseca et al [3] performed it based in a similar ideas but in a tow-way nested mixed or random effects model. In case of random effects model, Fonseca et al [3] performed the computation of such interval only for the balanced data, whereas in the mixed effects case they dit it only for the unbalanced data. For the computation of twosided tolerance interval in models with mixed and/or random effects we recomend, for instance, Sharma and Mathew [7]. The purpose of this paper is the computation of upper and lower tolerance interval in a two-way nested mixed effects models in balanced data. For the case of unbalanced data, as mentioned above, Fonseca et al [3] have already computed upper tolerance interval. Hence, using the notions persented in Fonseca et al [3] and Krishnamoorthy and Mathew [4], we present some results on the construction of one-sided tolerance interval for the balanced case. Thus, in order to do so at first instance we perform the construction for the upper case, and then the construction for the lower case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the two Higgs doublet model extension of the standard model in the limit where all physical scalar particles are very heavy, too heavy, in fact, to be experimentally produced in forthcoming experiments. The symmetry-breaking sector can thus be described by an effective chiral Lagrangian. We obtain the values of the coefficients of the O(p4) operators relevant to the oblique corrections and investigate to what extent some nondecoupling effects may remain at low energies. A comparison with recent CERN LEP data shows that this model is indistinguishable from the standard model with one doublet and with a heavy Higgs boson, unless the scalar mass splittings are large.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we study dynamical aspects of the two-dimensional (2D) gonihedric spin model using both numerical and analytical methods. This spin model has vanishing microscopic surface tension and it actually describes an ensemble of loops living on a 2D surface. The self-avoidance of loops is parametrized by a parameter ¿. The ¿=0 model can be mapped to one of the six-vertex models discussed by Baxter, and it does not have critical behavior. We have found that allowing for ¿¿0 does not lead to critical behavior either. Finite-size effects are rather severe, and in order to understand these effects, a finite-volume calculation for non-self-avoiding loops is presented. This model, like his 3D counterpart, exhibits very slow dynamics, but a careful analysis of dynamical observables reveals nonglassy evolution (unlike its 3D counterpart). We find, also in this ¿=0 case, the law that governs the long-time, low-temperature evolution of the system, through a dual description in terms of defects. A power, rather than logarithmic, law for the approach to equilibrium has been found.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a mean field model that describes the effect of multiplicative noise in spatially extended systems. The model can be solved analytically. For the case of the phi4 potential it predicts that the phase transition is shifted. This conclusion is supported by numerical simulations of this model in two dimensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the exact ground state of the two-dimensional random-field Ising model as a function of both the external applied field B and the standard deviation ¿ of the Gaussian random-field distribution. The equilibrium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics. We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior for the same value of ¿. The corresponding exponents are compared.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a phase-field model for the dynamics of the interface between two inmiscible fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these equations to first order in the interface thickness. We also compute the effect of such corrections on the linear dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In particular, the convergence appears to be slower for high viscosity contrasts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a very simple but fairly unknown method to obtain exact lower bounds to the ground-state energy of any Hamiltonian that can be partitioned into a sum of sub-Hamiltonians. The technique is applied, in particular, to the two-dimensional spin-1/2 antiferromagnetic Heisenberg model. Reasonably good results are easily obtained and the extension of the method to other systems is straightforward.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated Potts model with variables having an integer absolute value and a sign. This model presents precursor phenomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can be related to a thermodynamic transition. Furthermore, this transition can be mapped onto a percolation transition. We numerically study the phase diagram in two dimensions (2D) for this model with frustration and without disorder and we compare it to the phase diagram of (i) the model with frustration and disorder and (ii) the ferromagnetic model. Introducing a parameter that connects the three models, we generalize the exact expression of the ferromagnetic Potts transition temperature in 2D to the other cases. Finally, we estimate the dynamic critical exponents related to the Potts order parameter and to the energy.