936 resultados para Turkish language--Composition and exercises
Resumo:
Particulate scattering and backscattering are two quantities that have traditionally been used to quantify in situ particulate concentration. The ratio of the backscattering by particles to total scattering by particles (the particulate backscattering ratio) is weakly dependent on concentration and therefore provides us with information on the characteristics of the particulate material, such as the index of refraction. The index of refraction is an indicator of the bulk particulate composition, as inorganic minerals have high indices of refraction relative to oceanic organic particles such as phytoplankton and detrital material that typically have a high water content. We use measurements collected near the Rutgers University Long-term Ecosystem Observatory in 15 m of water in the Mid-Atlantic Bight to examine application of the backscattering ratio. Using four different instruments, the HOBILabs Hydroscat-6, the WETLabs ac-9 and EcoVSF, and a prototype VSF meter, three estimates of the ratio of the particulate backscattering ratio were obtained and found to compare well. This is remarkable because these are new instruments with large differences in design and calibration. The backscattering ratio is used to map different types of particles in the nearshore region, suggesting that it may act as a tracer of water movement. We find a significant relationship between the backscattering ratio and the ratio of chlorophyll to beam attenuation. This implies that these more traditional measurements may be used to identify when phytoplankton or inorganic particles dominate. In addition, it provides an independent confirmation of the link between the backscattering ratio and the bulk composition of particles.
Resumo:
In the genus Petunia, distinct pollination syndromes may have evolved in association with bee-visitation (P. integrifolia spp.) or hawk moth-visitation (P. axillaris spp). We investigated the extent of congruence between floral fragrance and olfactory perception of the hawk moth Manduca sexta. Hawk moth pollinated P. axillaris releases high levels of several compounds compared to the bee-pollinated P. integrifolia that releases benzaldehyde almost exclusively. The three dominating compounds in P. axillaris were benzaldehyde, benzyl alcohol and methyl benzoate. In P. axillaris, benzenoids showed a circadian rhythm with an emission peak at night, which was absent from P. integrifolia. These characters were highly conserved among different P. axillaris subspecies and P. axillaris accessions, with some differences in fragrance composition. Electroantennogram (EAG) recordings using flower-blends of different wild Petunia species on female M. sexta antennae showed that P. axillaris odours elicited stronger responses than P. integrifolia odours. EAG responses were highest to the three dominating compounds in the P. axillaris flower odours. Further, EAG responses to odour-samples collected from P. axillaris flowers confirmed that odours collected at night evoked stronger responses from M. sexta than odours collected during the day. These results show that timing of odour emissions by P. axillaris is in tune with nocturnal hawk moth activity and that flower-volatile composition is adapted to the antennal perception of these pollinators.
Resumo:
A considerable number of Irish Catholics in West Belfast, originally native English speakers, have started learning the Irish language throughout the Northern Irish conflict in order to feel more Irish. Many of these have developed a strong conviction that the Irish language contains a different worldview from the one embodied in English. However, rather than constituting a plausible representation of relevant differences embodied in the languages themselves, this article puts forward the hypothesis that such a neo-Whorfian endorsement of linguistic relativity might rather be the product of dialectical idiomatization, following from the interplay of prevailing language ideologies and effects of second language acquisition.
Resumo:
BACKGROUND A low or high body mass index (BMI) has been associated with increased mortality risk in older subjects without taking fat mass index (FMI) and fat-free mass index (FFMI) into account. This information is essential because FMI is modulated through different healthcare strategies than is FFMI. OBJECTIVE We aimed to determine the relation between body composition and mortality in older subjects. DESIGN We included all adults ≥65 y old who were living in Switzerland and had a body-composition measurement by bioelectrical impedance analysis at the Geneva University Hospitals between 1990 and 2011. FMI and FFMI were divided into sex-specific quartiles. Quartile 1 (i.e., the reference category) corresponded to the lowest FMI or FFMI quartile. Mortality data were retrieved from the hospital database, the Geneva death register, and the Swiss National Cohort until December 2012. Comorbidities were assessed by using the Cumulative Illness Rating Scale. RESULTS Of 3181 subjects included, 766 women and 1007 men died at a mean age of 82.8 and 78.5 y, respectively. Sex-specific Cox regression models, which were used to adjust for age, BMI, smoking, ambulatory or hospitalized state, and calendar time, showed that body composition did not predict mortality in women irrespective of whether comorbidities were taken into account. In men, risk of mortality was lower with FFMI in quartiles 3 and 4 [HR: 0.78 (95% CI: 0.62, 0.98) and 0.64 (95% CI: 0.49, 0.85), respectively] but was not affected by FMI. When comorbidities were adjusted for, FFMI in quartile 4 (>19.5 kg/m(2)) still predicted a lower risk of mortality (HR: 0.72; 95% CI: 0.54, 0.96). CONCLUSIONS Low FFMI is a stronger predictor of mortality than is BMI in older men but not older women. FMI had no impact on mortality. These results suggest potential benefits of preventive interventions with the aim of maintaining muscle mass in older men. This trial was registered at clinicaltrials.gov as NCT01472679.
Resumo:
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.
Resumo:
Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.