799 resultados para Tungsten carbide-cobalt alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and W-doped PZT ceramics (PZT and PZTW) were prepared by a hybrid process consisting in the association of polymeric precursor and partial oxalate methods. The phase formation was investigated by simultaneous thermal analysis (TG/DSC) and X-ray diffraction (XRD). The effect of W doping PZT and their electrical properties was evaluated. Substitution of W by Ti leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of eutectoid decomposition beta(1)' --> gamma(2) + (alpha + gamma(2)) in Cu-12.86 wt% Al and Cu-12.84 wt% Al-1.98 wt% Ag alloys was studied by hardness measurements, using the Johnson-Mehl-Avrami equation. The results indicate that the presence of silver seems to influence the nucleation rate and the activation energy of the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autoxidation of [Ni-II(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) and Ni(II)tetraglycine, accelerated by S-IV is studied spectrophotometrically by following the formation of Ni-III complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocynnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalytical techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the bath pH on the electrodeposition of nanocrystalline Pd-Co alloys and on their magnetic properties was studied. The pH practically did not affect the alloy composition. Conversely, the pH showed a significant influence on the shape and size of crystallites. Two different crystallites morphology were observed depending on the bath pH. A crystallite size ranging from 18.2 to 30 nm was obtained from X-ray diffractometry (XRD) patterns using the Scherrer's method. Also from the XRD patterns the lattice strain percentage was calculated and correlated with the residual stress, which probably originated during the film electrodeposition on the substrate. Some alloy magnetic properties showed small variations. In contrast, high and unexpected coercivities were obtained reaching a maximum of 1.69 kOe at pH 5.5. The high coercivity values were attributed to the presence of residual stress at the film-substrate interface, which increased as the bath pH and crystallite size decrease, both of them contributing simultaneously to increase in coercivity. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Pd-Co alloys were obtained by electrodeposition from an ammoniacal chloride bath. The influence of the crystallite size and the residual stress on the magnetic properties of the alloys was investigated. The residual stress increased as the applied current density was increased. It was associated to the high nucleation rate during electrodeposition and correlated to the lattice strain, estimated from the XRD patterns. Also from the XRD patterns the average crystallite size and the lattice constant were determined by Scherrer's and Rietveld's methods, respectively. Both parameters were directly influenced by the applied current density. Magnetic properties such as coercivity, remanence, saturation magnetization and squareness showed strong dependence on the residual stress and crystallite size. Coercivity higher than 1 kOe was achieved when a high current density was applied. High coercivity was attributed to the presence of residual stress and to the small crystallite size of deposits. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal friction and frequency measurements as a function of temperature have been carried out in Nb and Nb-Zr policrystalline samples, using a torsion pendulum in the temperature range between 300K and 700K the heating rate was 1K/min and the pressure was kept better than 5x10(-3) mbar. Metals with bce lattice containing solute atoms dissolved interstitially often show anelastic behaviour due to a process know as stress-induced ordering responsible for the appearance of Snoek peaks. In the Nb sample it has been identified two constituent peaks corresponding to the interstitial-matrix interactions (Nb-O and Nb-N), but for the Nb-Zr samples with interstitial solute concentrations very close to those measured for the unalloyed Nb, it was not observed any mechanical relaxation peaks due to the presence of oxygen and nitrogen in solid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the mechanical properties of germanium-rich amorphous carbon-germanium alloys prepared by RF sputtering of a germanium/graphite target under an argon/hydrogen atmosphere. Nano-hardness, elastic modulus and stress were investigated as a function of the carbon content. The stress, which is reduced by the incorporation of carbon, was related to the film structure and to the difference in the Ge-Ge and Ge-C bond length. Contrary to what was expected, the hardness and elastic modulus of the alloys are lower than the corresponding values for pure amorphous hydrogenated germanium film, which in turn has both properties also smaller than those of crystalline germanium. These properties are analyzed in terms of the structural properties of the films. (C) 2001 Elsevier B.V. B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes optimized conditions for preparation of a cobalt complex entrapped in alumina amorphous materials in the form of powder. The hybrid materials, CoNHG, were obtained by a nonhydrolytic sol-gel route through condensation of aluminum chloride with diisopropylether in the presence of cobalt chloride. The materials were calcined at various temperatures. The presence of cobalt entrapped in the alumina matrix is confirmed by ultraviolet visible spectroscopy. The materials have been characterized by X-ray diffraction (XRD), surface area analysis, thermogravimetric analysis (TGA), differential thermal analyses (DTA) and transmission electron microscopy (TEM). The prepared alumina matrix materials are amorphous, even after heat treatment up to 750 degreesC. The XRD, TGA/DTA and TEM data support the increase of sample crystallization with increasing temperature. The specific surface area, pore size and pore diameter changed as a function of the heat treatment temperature employed. Different heat treatment temperatures result in materials with different compositions and structures, and influence their catalytic activity. The entrapped cobalt materials calcined at 750 degreesC efficiently catalyzed the epoxidation of (Z)-cyclooctene using iodozylbenzene as the oxygen donor. (C) 2003 Elsevier B.V. All rights reserved.