965 resultados para Transgene Expression Level
Resumo:
The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.
Resumo:
Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pairfed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs, that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-RI) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis, In previous studies, me have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis, We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Pour of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors, (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-RI and more so for the TRAIL decoy receptors TRAIL-R3 and -R4, Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-RI and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-RI and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.
Resumo:
Background: IL-5 controls development of eosinophilia and has been shown to be involved in the pathogenesis of allergic diseases. In both atopic and nonatopic asthma, elevated IL-5 has been detected in peripheral blood and the airways. IL-5 is produced mainly by activated T cells, and its expression is regulated at the transcriptional level. Objective: This study focuses on the functional analysis of the human IL-5 (hIL-5) promoter and characterization of eis-regulatory elements and transcription factors involved in the suppression of IL-5 transcription in T cells. Methods: Methods used in this study include DNase I footprint assays, electrophoretic mobility shift assays, and functional analysis by mammalian cell transfection involving deletion analysis and site-directed mutagenesis. Results: We identified 5 protein binding regions (BRs) located within the proximal hIL-5 promoter. Functional analysis indicates that the BRs are involved in control of hIL-5 promoter activity. Two of these regions, BR3 and BR4 located at positions -102 to -73, have not previously been described as regulators of IL-5 expression in T cells. We show that the BR3 sequence contains a novel negative regulatory element located at positions -90 to -79 of the hIL-5 promoter, which binds Oct1, octamer-like, and YY1 nuclear factors. Substitution mutations, which abolished binding of these proteins to the BR3 sequence, significantly increased hIL-5 promoter activity in activated T cells. Conclusion: We suggest that Oct1, YY1, and octamer-like factors binding to the -90/-79 sequence within the proximal IL-5 promoter are involved in suppression of IL-5 transcription in T cells.
Resumo:
CD4-selective targeting of an antibody-polycation-DNA complex was investigated The complex was synthesized with the anti-CD4 monoclonal antibody B-F5, polylysine(268) (pLL) and either the pGL3 control vector containing the luciferase reporter gene or the pGeneGrip vector containing the green fluorescent protein (GFP) gene. B-F5-pLL-DNA complexes inhibited the binding of I-125-B-F5 to CD4(+) Jurkat cells, while complexes synthesised either without B-F5 or using a non-specific mouse IgG1 antibody had little or no effect Expression of the luciferase reporter gene was achieved in Jurkat cells using the B-F5-pLL-pGL3 complex and was enhanced in the presence of PMA. Negligible luciferase activity was defected with the non-specific antibody complex in Jurkat cells or with the B-F5-pLL-pGL3 complex in the CD4(-) K-562 cells. Using complexes synthesised with the pGeneGrip vector, the transfection efficiency in Jurkat and K-562 cells was examined using confocal microscopy. More than 95% of Jurkat cells expressed GFP and the level of this expression was markedly enhanced by PMA. Negligible GFP expression was seen in K-562 cells or when B-F5 was replaced by a nonspecific antibody. Using flow cytometry, fluorescein-labelled complex showed specific targeting to CD4(+) cells in a mixed cell population from human peripheral blood. These studies demonstrate the selective transfection of CD4(+) T-lymphoid cells using a polycation-based gene delivery system. The complex may provide a means of delivering anti-HIV gene therapies to CD4(+) cells in vivo.
Resumo:
We have generated transgenic mice that harbor a 140 kb genomic fragment of the human BRCA1 locus (TgN.BRCA1(GEN)). We find that the transgene directs appropriate expression of human BRCA1 transcripts in multiple mouse tissues, and that human BRCA1 protein is expressed and stabilized following exposure to DIVA damage, Such mice are completely normal, with no overt signs of BRCA1 toxicity commonly observed when BRCA1 is expressed from heterologous promoters. Most importantly, however, the transgene rescues the otherwise lethal phenotype associated with the targeted hypomorphic allele (Brca1(Delta exIISA)). Brca1(-/-); TgN.BRCA1(GEN) bigenic animals develop normally and can be maintained as a distinct line. These results show that a 140 kb fragment of chromosome 17 contains all elements necessary for the correct expression, localization, and function of the BRCA1 protein, Further, the model provides evidence that function and regulation of the human BRCA1 gene can be studied and manipulated in a genetically tractable mammalian system.
Resumo:
This study focused on the DNA-binding activity and protein expression of the transcription factors Egr-1 and Egr-3 in the rat brain cortex and hippocampus after chronic or acute ethanol exposure. DNA-binding activity was reduced in both regions after chronic ethanol exposure and was restored to the level of the pair-fed group at 16 h of withdrawal. Cortical Egr-1 protein levels were not altered by chronic ethanol exposure but increased 16 h after withdrawal, thus mirroring DNA-binding activity. In contrast, Egr-3 protein levels did not undergo any change. There was no change in the level of either protein in the hippocampus. Immunohistochemistry revealed a region-selective change in immunopositive cells in the cortex and hippocampus. Finally, an acute bolus dose of ethanol did not affect Egr DNA-binding activity and ethanol treatment did not alter the DNA-binding activity or protein levels of the transcription factor Spl. These observations suggest that chronic exposure to ethanol has region-selective effects on the DNA-binding activity and protein expression of Egr-1 and Egr-3 transcription factors in the rat brain. These changes occur after prolonged ethanol exposure and may thus reflect neuroadaptive changes associated with physical dependency and withdrawal. These effects are also transcription factor-selective. Clearly, protein expression is not the sole mediator of the changes in DNA-binding activity and chronic ethanol exposure must have effects on modulatory agents of Egr DNA-binding activity. (C) 2000 Elsevier Science Ltd, All rights reserved.
Resumo:
The analysis of keratin 6 expression is complicated by the presence of multiple isoforms that are expressed constitutively in a number of internal stratified epithelia, in palmoplantar epidermis, and in the companion cell layer of the hair follicle. In addition, keratin 6 expression is inducible in interfollicular epidermis and the outer root sheath of the follicle, in response to wounding stimuli, phorbol esters, or retinoic acid. In order to establish the critical regions involved in the regulation of keratin 6a (the dominant isoform in mice), we generated transgenic mice with two different-sized mouse keratin 6a constructs containing either 1.3 kb or 0.12 kb of 5' flanking sequence linked to the lacZ reporter gene. Both constructs also contained the first intron and the 3' flanking sequence of mouse keratin 6a. Ectopic expression of either transgene was not observed. Double-label immunofluorescence analyses demonstrated expression of the reporter gene in keratin 6 expressing tissues, including the hair follicle, tongue, footpad, and nail bed, showing that both transgenes retained keratinocyte-specific expression. Quantitative analysis of beta -galactosidase activity verified that both the 1.3 and 0.12 kb keratin 6a promoter constructs produced similar levels of the reporter. Notably, both constructs were constitutively expressed in the outer root sheath and interfollicular epidermis in the absence of any activating stimulus, suggesting that they lack the regulatory elements that normally silence transcription in these cells. This study has revealed that a keratin 6a minigene contains critical cis elements that mediate tissue-specific expression and that the elements regulating keratin 6 induction lie distal to the 1.3 kb promoter region.
Resumo:
Real-time Taqman(TM) RT-PCR was used to make quantitative comparisons of the levels of PrRP mRNA expression in micropunch brain samples from rats at different stages of the oestrous cycle and in lactation. The nucleus of the solitary tract and ventrolateral reticular nuclei of the medulla oblongata contained significantly (P < 0.05) greater levels of PrRP mRNA than any hypothalamic region. Within the hypothalamus, the highest level of PrRP expression was localised to the dorsomedial aspect of the ventromedial hypothalamus. All other hypothalamic regions exhibited significantly (P < 0.05) lower levels of expression, including the rostral and caudal dorsomedial hypothalamus. Very low levels of PrRP expression were observed in the arcuate nucleus, paraventricular nucleus, medial preoptic nucleus and ventrolateral aspect of the ventromedial hypothalamus. No significant changes in PrRP expression were noted in any sampled region between proestrus, oestrus or dioestrus. Similarly, PrRP expression in hypothalamic regions did not differ between lactating and non-lactating (dioestrous) animals. During validation of RT-PCR techniques we cloned and sequenced a novel splice variant of PrRP from the hypothalamus. This variant arises from alternative splicing of the donor site within exon 2, resulting in an insert of 64 base pairs and shift in the-codon:reading frame with the introduction of an early stop codon. In the hypothalamus and brainstem, mRNA expression of the variant was restricted to regions that expressed PrRP. These results suggest that PrRP expression in the hypothalamus may be more Widespread than previously reported. However, the relatively low level of PrRP in the hypothalamus and the lack of significant changes in expression during the oestrous cycle and lactation provides further evidence that PrRP is unlikely to be involved in the regulation of prolactin, secretion. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Background. Vascular calcification (VC) is commonly seen in patients with chronic kidney disease (CKD). Elevated levels of phosphate and parathormone (PTH) are considered nontraditional risk factors for VC. It has been shown that, in vitro, phosphate transforms vascular smooth muscle cells (VSMCs) into calcifying cells, evidenced by upregulated expression of runt-related transcription factor 2 (Runx2), whereas PTH is protective against VC. In addition, Runx2 has been detected in calcified arteries of CKD patients. However, the in vivo effect of phosphate and PTH on Runx2 expression remains unknown. Methods. Wistar rats were submitted to parathyroidectomy, 5/6 nephrectomy (Nx) and continuous infusion of 1-34 rat PTH (at physiological or supraphysiological rates) or were sham-operated. Diets varied only in phosphate content, which was low (0.2%) or high (1.2%). Biochemical, histological, immunohistochemistry and immunofluorescence analyses were performed. Results. Nephrectomized animals receiving high-PTH infusion presented VC, regardless of the phosphate intake level. However, phosphate overload and normal PTH infusion induced phenotypic changes in VSMCs, as evidenced by upregulated aortic expression of Runx2. High-PTH infusion promoted histological changes in the expression of osteoprotegerin and type I collagen in calcified arteries. Conclusions. Phosphate, by itself is a potential pathogenic factor for VC. It is of note that phosphate overload, even without VC, was associated with overexpression of Runx2 in VSMCs. The mineral imbalance often seen in patients with CKD should be corrected.
Resumo:
Context: A better means to accurately identify malignant thyroid nodules and to distinguish them from benign tumors is needed. We previously identified markers for detecting thyroid malignancy, with sensitivity estimated at or close to 100%. One lingering problem with these markers was that false positives occurred with Hurthle cell adenomas (HCA) which lowered test specificity. Methods: To locate accurate diagnostic markers, we profiled in depth the transcripts of a HCA and a Hurthle cell carcinoma (HCC). From 1146 differentially expressed genes, 18 transcripts specifically expressed in HCA were tested by quantitative PCR in a wide range of thyroid tumors (n = 76). Sensibility and specificity were calculated using receiver operating characteristic (ROC). Selected markers were further validated in an independent set of thyroid tumors (n = 82) by immunohistochemistry. To define the panel that would yield best diagnostic accuracy, these markers were tested in combination with our previous identified markers. Results: Seventeen of the 18 genes showed statistical significance based on a mean relative level of expression (P < 0.05). KLK1 (sensitivity = 0.97) and PVALB (sensitivity = 0.94) were the best candidate markers. The combination of PVALB and C1orf24 increased specificity to > 97% and maintained sensitivity for detection of carcinoma. Conclusion: We identified tumor markers that can be used in combination for a more accurate preoperative diagnosis of thyroid nodules and for postoperative diagnosis of thyroid carcinoma in tumor sections. This improved test would help physicians rapidly focus treatment on true malignancies and avoid unnecessary treatment of benign tumors, simultaneously improving medical care and reducing costs. (J Clin Endocrinol Metab 96: E151-E160, 2011)
Resumo:
The technique of polymerase chain reaction (PCR) differential display was used to detect alterations in gene expression after chronic alcohol administration. Male Wistar rats were treated with ethanol vapor for 14 days. The cDNA generated from mRNA isolated from the hippocampi of ethanol-treated and control animals was compared by PCR differential display. A differentially expressed cDNA fragment was used to screen mRNA samples by Northern analysis. The level of a mRNA was significantly elevated (x 2.5) in the hippocampus, but not the cortex of alcohol-treated rats up to 48 hr after withdrawal. Sequence analysis of the cDNA fragment revealed an almost perfect homology to rat mitochondrial NADH dehydrogenase subunit 4 mRNA. The selective induction of this mRNA in alcohol-treated rat brain areas suggests altered metabolic processes and possible dysfunction of the mitochondria. The technique of PCR differential display may prove useful in further analysis of gene expression during alcohol dependence and withdrawal.
Resumo:
Insulin-like growth factor-I (IGF-I) is a preiotrophic polypeptide which appears to have roles both as a circulating endocrine hormone and as a locally synthesized paracrine or autocrine tissue factor. IGF-I plays a major role in regulating the growth of cells in vivo and in vitro and initiates metabolic and mitogenic processes in a wide variety of cell types by binding to specific type I receptors in the plasma membrane, In this study, we report the distribution of IGF-I receptors in odontogenic cells at the ultrastructural level using the high resolution protein A-gold technique, In the pre-secretory stage, very little gold label was visible over the ameloblasts and odontoblasts, During the secretory stage the label was mostly seen in association with the cell membranes and endoplasmic reticulum of the ameloblasts. Lysosome-like elements in the post-secretory stage were labelled as well as multivesicular dense bodies, Very little labelling was encountered in the ameloblasts in the transitional stage, where apoptotic bodies were clearly visible, The maturation stage also exhibited labelling of the secretory-like granules in the distal surface. The presence of gold particles over the plasma membrane is an indication that IGF-I receptor is a membrane-bound receptor. Furthermore, the intracellular distribution of the label over the endoplasmic reticulum supports the local synthesis of the IGF-I receptor. The absence of labelling over the transitional ameloblasts suggests that the transitional stage may require the non-expression of IGF-I as a prerequiste or even a trigger for apoptosis.
Resumo:
The activation of inflammatory cascades has been consistently demonstrated in the pathophysiology of Alzheimer`s disease (AD). Among several putative neuroinflammatory mechanisms, the tumor necrosis factor alpha (TNF-alpha) signaling system has a central role in this process. Recent evidence indicates that the abnormal production of inflammatory factors may accompany the progression from mild cognitive impairment (MCI) to dementia. We aimed to examine serum levels of TNF-alpha and its soluble receptors (sTNFR1 and sTNFR2) in patients with MCI and AD as compared to cognitively unimpaired elderly subjects. We further aimed to investigate whether abnormal levels of these cytokines predict the progression from MCI to AD upon follow-up. We utilized cross-sectional determination of serum levels of TNF-alpha, sTNFR1, and sTNFR2 (ELISA method) in a test group comprising 167 older adults (31 AD, 72 MCI, and 64 healthy controls), and longitudinal reassessment of clinical status after 18.9 +/- 10.0 months. At baseline, there were no statistically significant differences in serum TNF-alpha, sTNFR1, and sTNFR2 between patients with MCI and AD as compared to controls. Nevertheless, patients with MCI who progressed to AD had significantly higher serum sTNFR1 levels as opposed to patients who retained the diagnosis of MCI upon follow-up (p = 0.03). Cox regression analysis showed that high serum sTNFR1 levels predicted the conversion from MCI to AD (p = 0.003), whereas no significant differences were found with respect to serum levels of TNF-alpha and sTNFR2. Abnormal activation of TNF-alpha signaling system, represented by increased expression of sTNFR1, is associated with a higher risk of progression from MCI to AD.