852 resultados para Trafficking in persons
Resumo:
Atherosclerosis is widely accepted as a complex genetic phenotype and is the usual cause of cardiovascular disease, the world’s leading killer. Genetic factors have been proven to be important risk contributors for atherosclerosis and much work has been done to identify promising candidates that might play a role in the development of atherosclerosis. It is well known that many independent replications are needed to unequivocally establish a valid genotype-phenotype association across different populations before the findings are extended to clinical settings and to the expensive follow-up studies designed to identify causal genetic variants. Aiming to replicate the association with atherosclerosis in the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, we assessed the relationship of 32 atherosclerosis candidate SNPs to atherosclerosis in the PDAY cohort, consisting of AA and EA young people aged 15-34 years who died of non-medical causes. Two association studies, a whole sample study and a 1:1 matched case control study were performed by use of multiple linear regression and logistic regression analyses, respectively. For the whole sample association study, 32 SNPs among 2,650 individuals (1,369 AA and 1,281 EA) were tested for the association with six early atherosclerosis phenotypes: abdominal aorta fatty streaks, abdominal aorta raised lesions, right coronary artery fatty streaks, right coronary artery raised lesions, thoracic aorta fatty streaks, and thoracic aorta raised lesions. For the matched case-control association study, 337 case-control paired samples were included; cases were chosen with the highest total raised lesion scores from the studied population, while controls were randomly selected from individuals that had no raised lesions and matched to cases by age, gender and race. Sixteen SNPs in 13 genes were found to be significantly associated with atherosclerosis in at least one of the PDAY association studies. Among these 16 findings: eight SNPs (rs9579646, rs6053733, rs3849150, rs10499903, rs2148079, rs5073691, rs10116277, and rs17228212) successfully replicated previous results, six SNPs (rs17222814, rs10811661, rs7028570, rs7291467, rs16996148 and rs10401969) were reported as new findings exclusive to our study, the last two of the 16 SNPs, rs501120 and rs6922269, showed either intriguing or conflicting result. SNP rs17222814 in ALOX5AP and SNP rs3849150 in LRRC18 were consistently associated with atherosclerosis in both prior and the two PDAY association studies. SNP rs3849150 was also identified to be highly correlated with a non-synonymous coding SNP, rs17772611, which may damage the protein (polyphen score = 0.996), suggesting that SNP rs17772611 may be the causal functional variant.^ In conclusion, our study added more support for the association of these candidate genes with atherosclerosis. SNPs rs3849150 and rs17772611 of LRRC18, as well as SNP rs17222814 of ALOX5AP, were the most significant findings from our study, and may be ranked among the best for further study.^
Resumo:
How do persons with disabilities (PWDs) earn a living? From the view point of poverty reduction, this question is quite critical in developing countries. This paper presents an investigation of economic activities of PWDs in the Philippines where, among developing countries, disability-related legislation is relatively progressive. In 2008, a field survey was conducted in cooperation with Disability People’s Organizations (DPOs) using a tailor-made questionnaire in four representative cities of Metro Manila. The level and determinants of income of PWDs were examined with Mincer regression. Conclusions are as follows: (1) The incidence and depth of poverty are greater among sample PWDs than that of the total population in Metro Manila. (2) There is remarkable income disparity among PWDs which is associated with education and sex. (3) After controlling individual, parental, and environmental characteristics, it was found that female PWDs are likely to earn less than male PWDs due to fewer opportunities to participate in economic activities. It is suggested that female PWDs are doubly handicapped in earning income.
Resumo:
KCNQ4 mutations underlie DFNA2, a subtype of autosomal dominant hearing loss. We had previously identified the pore-region p.G296S mutation that impaired channel activity in two manners: it greatly reduced surface expression and abolished channel function. Moreover, G296S mutant exerted a strong dominant-negative effect on potassium currents by reducing the channel expression at the cell surface representing the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2. Here, we have investigated the pathogenic mechanism associated with all the described KCNQ4 mutations (F182L, W242X, E260K, D262V, L274H, W276S, L281S, G285C, G285S and G321S) that are located in different domains of the channel protein. F182L mutant showed a wild type-like cell-surface distribution in transiently transfected NIH3T3 fibroblasts and the recorded currents in Xenopus oocytes resembled those of the wild-type. The remaining KCNQ4 mutants abolished potassium currents, but displayed distinct levels of defective cell-surface expression in NIH3T3 as quantified by flow citometry. Co-localization studies revealed these mutants were retained in the ER, unless W242X, which showed a clear co-localization with Golgi apparatus. Interestingly, this mutation results in a truncated KCNQ4 protein at the S5 transmembrane domain, before the pore region, that escapes the protein quality control in the ER but does not reach the cell surface at normal levels. Currently we are investigating the trafficking behaviour and electrophysiological properties of several KCNQ4 truncated proteins artificially generated in order to identify specific motifs involved in channel retention/exportation. Altogether, our results indicate that a defect in KCNQ4 trafficking is the common mechanism underlying DFNA2
Resumo:
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.
Resumo:
The trans-Golgi network (TGN) plays a pivotal role in directing proteins in the secretory pathway to the appropriate cellular destination. VAMP4, a recently discovered member of the vesicle-associated membrane protein (VAMP) family of trafficking proteins, has been suggested to play a role in mediating TGN trafficking. To better understand the function of VAMP4, we examined its precise subcellular distribution. Indirect immunofluorescence and electron microscopy revealed that the majority of VAMP4 localized to tubular and vesicular membranes of the TGN, which were in part coated with clathrin. In these compartments, VAMP4 was found to colocalize with the putative TGN-trafficking protein syntaxin 6. Additional labeling was also present on clathrin-coated and noncoated vesicles, on endosomes and the medial and trans side of the Golgi complex, as well as on immature secretory granules in PC12 cells. Immunoprecipitation of VAMP4 from rat brain detergent extracts revealed that VAMP4 exists in a complex containing syntaxin 6. Converging lines of evidence implicate a role for VAMP4 in TGN-to-endosome transport.
Resumo:
To examine the trafficking, assembly, and turnover of connexin43 (Cx43) in living cells, we used an enhanced red-shifted mutant of green fluorescent protein (GFP) to construct a Cx43-GFP chimera. When cDNA encoding Cx43-GFP was transfected into communication-competent normal rat kidney cells, Cx43-negative Madin–Darby canine kidney (MDCK) cells, or communication-deficient Neuro2A or HeLa cells, the fusion protein of predicted length was expressed, transported, and assembled into gap junctions that exhibited the classical pentalaminar profile. Dye transfer studies showed that Cx43-GFP formed functional gap junction channels when transfected into otherwise communication-deficient HeLa or Neuro2A cells. Live imaging of Cx43-GFP in MDCK cells revealed that many gap junction plaques remained relatively immobile, whereas others coalesced laterally within the plasma membrane. Time-lapse imaging of live MDCK cells also revealed that Cx43-GFP was transported via highly mobile transport intermediates that could be divided into two size classes of <0.5 μm and 0.5–1.5 μm. In some cases, the larger intracellular Cx43-GFP transport intermediates were observed to form from the internalization of gap junctions, whereas the smaller transport intermediates may represent other routes of trafficking to or from the plasma membrane. The localization of Cx43-GFP in two transport compartments suggests that the dynamic formation and turnover of connexins may involve at least two distinct pathways.
Resumo:
TGN38 is one of the few known resident integral membrane proteins of the trans-Golgi network (TGN). Since it cycles constitutively between the TGN and the plasma membrane, TGN38 is ideally suited as a model protein for the identification of post-Golgi trafficking motifs. Several studies, employing chimeric constructs to detect such motifs within the cytosolic domain of TGN38, have identified the sequence 333YQRL336 as an autonomous signal capable of localizing reporter proteins to the TGN. In addition, one group has found that an upstream serine residue, S331, may also play a role in TGN38 localization. However, the nature and degree of participation of S331 in the localization of TGN38 remain uncertain, and the effect has been studied in chimeric constructs only. Here we investigate the role of S331 in the context of full-length TGN38. Mutations that abolish the hydroxyl moiety at position 331 (A, D, and E) lead to missorting of endocytosed TGN38 to the lysosome. Conversely, mutation of S331 to T has little effect on the endocytic trafficking of TGN38. Together, these findings indicate that the S331 hydroxyl group has a direct or indirect effect on the ability of the cytosolic tail of TGN38 to interact with trafficking and/or sorting machinery at the level of the early endosome. In addition, mutation of S331 to either A or D results in increased levels of TGN38 at the cell surface. The results confirm that S331 plays a critical role in the intracellular trafficking of TGN38 and further reveal that TGN38 undergoes a signal-mediated trafficking step at the level of the endosome.
Resumo:
Tlg1p and Tlg2p, members of the syntaxin family of SNAREs in yeast, have been implicated in both endocytosis and the retention of late Golgi markers. We have investigated the functions of these and the other endocytic syntaxins Pep12p and Vam3p. Remarkably, growth is possible in the absence of all four proteins. In the absence of the others, Pep12p and Tlg1p can each create endosomes accessible to the endocytic tracer dye FM4-64. However, although Pep12p is required for the ligand-induced internalization of the α factor receptor and its passage via Pep12p-containing membranes to the vacuole, Tlg1p is not. In contrast, Tlg1p is required for the efficient localization of the catalytic subunit of chitin synthase III (Chs3p) to the bud neck, a process that involves endocytosis and polarized delivery of Chs3p. In wild-type cells, internalized Chs3p cofractionates with Tlg1p and Tlg2p, and in a strain lacking the other endocytic syntaxins, either Tlg1p or Tlg2p is sufficient for correct localization of the enzyme. Pep12p is neither necessary nor sufficient for this process. We conclude that there are two endocytic routes in yeast that can operate independently and that Tlg1p is located at the junction of one of these with the polarized exocytic pathway.
Resumo:
To understand molecular mechanisms that regulate the intricate and dynamic organization of the endosomal compartment, it is important to establish the morphology, molecular composition, and functions of the different organelles involved in endosomal trafficking. Syntaxins and vesicle-associated membrane protein (VAMP) families, also known as soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), have been implicated in mediating membrane fusion and may play a role in determining the specificity of vesicular trafficking. Although several SNAREs, including VAMP3/cellubrevin, VAMP8/endobrevin, syntaxin 13, and syntaxin 7, have been localized to the endosomal membranes, their precise localization, biochemical interactions, and function remain unclear. Furthermore, little is known about SNAREs involved in lysosomal trafficking. So far, only one SNARE, VAMP7, has been localized to late endosomes (LEs), where it is proposed to mediate trafficking of epidermal growth factor receptor to LEs and lysosomes. Here we characterize the localization and function of two additional endosomal syntaxins, syntaxins 7 and 8, and propose that they mediate distinct steps of endosomal protein trafficking. Both syntaxins are found in SNARE complexes that are dissociated by α-soluble NSF attachment protein and NSF. Syntaxin 7 is mainly localized to vacuolar early endosomes (EEs) and may be involved in protein trafficking from the plasma membrane to the EE as well as in homotypic fusion of endocytic organelles. In contrast, syntaxin 8 is likely to function in clathrin-independent vesicular transport and membrane fusion events necessary for protein transport from EEs to LEs.
Resumo:
In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.
Resumo:
To improve the accuracy of predicting membrane protein sorting signals, we developed a general methodology for defining trafficking signal consensus sequences in the environment of the living cell. Our approach uses retroviral gene transfer to create combinatorial expression libraries of trafficking signal variants in mammalian cells, flow cytometry to sort cells based on trafficking phenotype, and quantitative trafficking assays to measure the efficacy of individual signals. Using this strategy to analyze arginine- and lysine-based endoplasmic reticulum localization signals, we demonstrate that small changes in the local sequence context dramatically alter signal strength, generating a broad spectrum of trafficking phenotypes. Finally, using sequences from our screen, we found that the potency of di-lysine, but not di-arginine, mediated endoplasmic reticulum localization was correlated with the strength of interaction with α-COP.
Resumo:
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca2+-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP−/− mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction ∼10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.
Resumo:
Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.
Resumo:
Transgenic tobacco (Nicotiana tabacum cv. Turkish Samsun NN) plants expressing a truncated replicase gene sequence from RNA-2 of strain Fny of cucumber mosaic virus (CMV) are resistant to systemic CMV disease. This is due to suppression of virus replication and cell-to-cell movement in the inoculated leaves of these plants. In this study, microinjection protocols were used to directly examine cell-to-cell trafficking of CMV viral RNA in these resistant plants. CMV RNA fluorescently labeled with the nucleotide-specific TOTO-1 iodide dye, when coinjected with unlabeled CMV 3a movement protein (MP), moved rapidly into the surrounding mesophyll cells in mature tobacco leaves of vector control and untransformed plants. Such trafficking required the presence of functional CMV 3a MP. In contrast, coinjection of CMV 3a MP and CMV TOTO-RNA failed to move in transgenic resistant plants expressing the CMV truncated replicase gene. Furthermore, coinjection of 9.4-kDa fluorescein-conjugated dextran (F-dextran) along with unlabeled CMV 3a MP resulted in cell-to-cell movement of the F-dextran in control plants, but not in the transgenic plants. Similar results were obtained with viral RNA when the 30-kDa MP of tobacco mosaic virus (TMV) was coinjected with TMV TOTO-RNA into replicase-resistant transgenic tobacco expressing the 54-kDa gene sequence of TMV. However, in these transgenic plants, the TMV-MP was still capable of mediating cell-to-cell movement of itself and the 9.4-kDa F-dextran. These results indicate that an inhibition of cell-to-cell viral RNA trafficking is correlated with replicase-mediated resistance. This raises the possibility that the RNA-2 product is potentially involved in the regulation of cell-to-cell movement of viral infectious material during CMV replication.