909 resultados para Tourism, recreation and climate change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios were derived from ten regional climate models from the ENSEMBLES project. Their respective temperature and precipitation changes between the scenario period (2074–2095) and the control period (1984–2005) were used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest) was assessed through an analysis of variance (ANOVA). Altogether, 15 mountainous catchments in Switzerland were analysed, exhibiting different degrees of glaciation during the control period (0–51%) and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area). The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as changes in evaporation or soil moisture are concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchments with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in this study, though, is the climate scenario and it is highly recommended to apply an ensemble of climate scenarios in the impact studies. The results presented here are valid for the climatic region they were tested for, i.e., a humid, mid-latitude mountainous environment. They might be different for regions where the evaporation is a major component of the water balance, for example. Nevertheless, a hydrological climate-impact study that assesses the additional impacts of forest and glacier change is new so far and provides insight into the question whether or not it is necessary to account for land cover changes as part of climate change impacts on hydrological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flood seasonality of catchments in Switzerland is likely to change under climate change because of anticipated alterations of precipitation as well as snow accumulation and melt. Information on this change is crucial for flood protection policies, for example, or regional flood frequency analysis. We analysed projected changes in mean annual and maximum floods of a 22-year period for 189 catchments in Switzerland and two scenario periods in the 21st century based on an ensemble of climate scenarios. The flood seasonality was analysed with directional statistics that allow assessing both changes in the mean date a flood occurs as well as changes in the strength of the seasonality. We found that the simulated change in flood seasonality is a function of the change in flow regime type. If snow accumulation and melt is important in a catchment during the control period, then the anticipated change in flood seasonality is most pronounced. Decreasing summer precipitation in the scenarios additionally affects the flood seasonality (mean date of flood occurrence) and leads to a decreasing strength of seasonality, that is a higher temporal variability in most cases. The magnitudes of mean annual floods and more clearly of maximum floods (in a 22-year period) are expected to increase in the future because of changes in flood-generating processes and scaled extreme precipitation. Southern alpine catchments show a different signal, though: the simulated mean annual floods decrease in the far future, that is at the end of the 21st century. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tree populations at the rear edge of species distribution are sensitive to climate stress and drought. However, growth responses of these tree populations to those stressors may vary along climatic gradients. To analyze growth responses to climate and drought using dendrochronology in rear-edge Pinus nigra populations located along an aridity gradient. Tree-ring width chronologies were built for the twentieth century and related to monthly climatic variables, a drought index (Standardized Precipitation-Evapotranspiration Index), and two atmospheric circulation patterns (North Atlantic and Western Mediterranean Oscillations). Growth was enhanced by wet and cold previous autumns and warm late winters before tree-ring formation. The influence of the previous year conditions on growth increased during the past century. Growth was significantly related to North Atlantic and Western Mediterranean Oscillations in two out of five sites. The strongest responses of growth to the drought index were observed in the most xeric sites. Dry conditions before tree-ring formation constrain growth in rear-edge P. nigra populations. The comparisons of climate-growth responses along aridity gradients allow characterizing the sensitivity of relict stands to climate warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experts working on behalf of international development organisations need better tools to assist land managers in developing countriesmaintain their livelihoods, as climate change puts pressure on the ecosystemservices that they depend upon. However, current understanding of livelihood vulnerability to climate change is based on a fractured and disparate set of theories andmethods. This reviewtherefore combines theoretical insights from sustainable livelihoods analysis with other analytical frameworks (including the ecosystem services framework, diffusion theory, social learning, adaptive management and transitions management) to assess the vulnerability of rural livelihoods to climate change. This integrated analytical framework helps diagnose vulnerability to climate change,whilst identifying and comparing adaptation options that could reduce vulnerability, following four broad steps: i) determine likely level of exposure to climate change, and how climate change might interact with existing stresses and other future drivers of change; ii) determine the sensitivity of stocks of capital assets and flows of ecosystem services to climate change; iii) identify factors influencing decisions to develop and/or adopt different adaptation strategies, based on innovation or the use/substitution of existing assets; and iv) identify and evaluate potential trade-offs between adaptation options. The paper concludes by identifying interdisciplinary research needs for assessing the vulnerability of livelihoods to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6-6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5-8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100-1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.