932 resultados para Thermal drying
Resumo:
A complet factorial experimental design was applied to determinate the influence of the variable inlet air temperature, feed flow rate, and atomizer speed on the physical properties of the tomato pulp powder. Results showed that these variables had a significant positive effect on the moisture content, apparent density, and particle size and no significant effects on the porosity and true density. The best spray drying conditions to produce lower moisture content and higher apparent density tomato powder were inlet air temperature of 200 °C, feed flow rate of 276 g/min, and atomizer speed of 30000 rpm.
Resumo:
In this study, the effect of the process variables of the air-drying of Sicilian lemon residues on some technological properties of the fibers produced was studied. The determination and modeling of desorption isotherms were used to establish the equilibrium moisture content at 60, 75, and 90 °C using the static method with 8 saturated salt solutions. The best fit was obtained with BET and GAB models. The drying process was conducted in a vertical tray dryer and delineated according to a central composite experimental design (2²) using the following as factors: air velocity (0.5, 0.75 and 1 m/s) and temperature (60, 75, and 90 °C), and it presented a good fit to the exponential model (R² > 99.9%). The experimental design responses evaluated were the technological properties of the fibers: water-holding, oil-holding, and swelling capacity. Since these properties were present in high levels, the lemon residues could be used to increase content of fibers in foods resulting in the addition of nutritional benefits for the consumers.
Resumo:
The sorption behavior of dry products is generally affected by the drying method. The sorption isotherms are useful to determine and compare thermodynamic properties of passion fruit pulp powder processed by different drying methods. The objective of this study is to analyze the effects of different drying methods on the sorption properties of passion fruit pulp powder. Passion fruit pulp powder was dehydrated using different dryers: vacuum, spray dryer, vibro-fluidized, and freeze dryer. The moisture equilibrium data of Passion Fruit Pulp (PFP) powders with 55% of maltodextrin (MD) were determined at 20, 30, 40 and 50 ºC. The behavior of the curves was type III, according to Brunauer's classification, and the GAB model was fitted to the experimental equilibrium data. The equilibrium moisture contents of the samples were little affected by temperature variation. The spray dryer provides a dry product with higher adsorption capacity than that of the other methods. The vibro-fluidized bed drying showed higher adsorption capacity than that of vacuum and freeze drying. The vacuum and freeze drying presented the same adsorption capacity. The isosteric heats of sorption were found to decrease with increasing moisture content. Considering the effect of drying methods, the highest isosteric heat of sorption was observed for powders produced by spray drying, whereas powders obtained by vacuum and freeze drying showed the lowest isosteric heats of sorption.
Resumo:
Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds) in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC) or refrigerated (5 ± 2 ºC) under fluorescent light exposure and analyzed on the day after processing (time zero) and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC) -Mass Spectrometry (MS): hexanal, (E)-hex-2-enal, 1-hexenol, (Z)-hex-3-enol, (Z)-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001) in hexanal and (Z)-hex-3-enyl acetate (p = 0.0029). As for the storage time, there was a much greater decrease in the esters contents, such as (Z)-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor
Resumo:
Microparticles obtained by complex coacervation were crosslinked with glutaraldehyde or with transglutaminase and dried using freeze drying or spray drying. Moist samples presented Encapsulation Efficiency (%EE) higher than 96%. The mean diameters ranged from 43.7 ± 3.4 to 96.4 ± 10.3 µm for moist samples, from 38.1 ± 5.36 to 65.2 ± 16.1 µm for dried samples, and from 62.5 ± 7.5 to 106.9 ± 26.1 µm for rehydrated microparticles. The integrity of the particles without crosslinking was maintained when freeze drying was used. After spray drying, only crosslinked samples were able to maintain the wall integrity. Microparticles had a round shape and in the case of dried samples rugged walls apparently without cracks were observed. Core distribution inside the particles was multinuclear and homogeneous and core release was evaluated using anhydrous ethanol. Moist particles crosslinked with glutaraldehyde at the concentration of 1.0 mM.g-1 protein (ptn), were more efficient with respect to the core retention compared to 0.1 mM.g-1 ptn or those crosslinked with transglutaminase (10 U.g-1 ptn). The drying processes had a strong influence on the core release profile reducing the amount released to all dry samples
Resumo:
The Brazil nut (Bertholletia excelsea H. B. K.) is noteworthy for its high content of lipids and proteins of elevated biological value and these factors justify the need for further research and incentives for the manufacturing of new trade products. In the present study we sought new forms of technological use of these nuts by the food industry, through their processing as flour, with no alteration in its energy content. The results after its elaboration showed a product with high energy value (431.48 kcal.100 g-1), protein content of 45.92 g.100 g-1, and fiber of 17.14%. The thermal analyses indicate that the introduction of another protein component, such as soy protein isolate, does not alter the reactions or thermal behavior. On the other hand, morphological analyses revealed granular structures similar to the structure of globular proteins. It was observed that after processing to obtain the flour, the product maintains its protein-energy content, as well as its characteristics when subjected to high temperatures.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.
Resumo:
In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene), BHA (2, 3-tert-butyl-4-methoxyphenol), TBHQ (tertiary butyl hydroquinone), PG (propyl gallate) - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate) additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.
Resumo:
Docosahexaenoic acid is an essential polyunsaturated fatty acid with important metabolic activities. Its conjugated double bonds make it susceptible to decomposition. Its stability may be improved through fatty acid entrapment with a spray-drying technique; however, the many parameters involved in this technique must be considered to avoid affecting the final product quality. Therefore, this study aimed to evaluate the entrapment conditions and yields of fish oil enriched with docosahexaenoic acid ethyl ester. Microcapsules were obtained from Acacia gum using a spray-drying technique. The experimental samples were analyzed by chromatography and delineated by Statistica software, which found the following optimum entrapment conditions: an inlet temperature of 188 °C; 30% core material; an N2 flow rate of 55 mm; and a pump flow rate of 12.5 mL/minute. These conditions provided a 66% yield of docosahexaenoic acid ethyl ester in the oil, corresponding to 19.8% of entrapped docosahexaenoic acid ethyl ester (w/w). This result was considered significant since 30% corresponded to wall material.
Resumo:
The objective of this research project was to study the drying of soymilk residue in a pneumatic flash dryer, using response Surface Methodology (RSM), and to evaluate the quality of the dried residue. Soymilk residue, also known as okara, was provided by a Brazilian soymilk factory. RSM showed that for a 120 second drying cycle, the lower the residue moisture contents (y) obtained, the higher the recirculation rates (x1), regardless of the air drying temperature (x2), and it could be expressed by the equation y = 7.072 - 7.92x1, with R² = 92,92%. It is possible to obtain okara with 10% of moisture (dwb) under the condition x1=1.25, equivalent to RR = 61%, with air drying temperatures ranging from 252 °C to 308 °C. The dried okara obtained through Central Compound Rotational Design (CCRD) presented a centesimal composition similar to the okara dried in a tray dryer, known as the original okara. There were significant variations (p < 0.05) in the Emulsifying Capacity (EC), Emulsion Stability (ES) and Protein Solubility (PS) between the dehydrated residues obtained. It was concluded that the flash drying of okara is technically feasible and that the physicochemical composition of the residue was not altered; on the contrary, the process promoted a positive effect on the technological functional properties.
Resumo:
The aim of this research was to study the effect of air-temperature and diet composition on the mass transfer kinetics during the drying process of pellets used for Japanese Abalone (Haliotis discus hannai) feeding. In the experimental design, three temperatures were used for convective drying, as well as three different diet compositions (Diets A, B and C), in which the amount of fishmeal, spirulin, algae, fish oil and cornstarch varied. The water diffusion coefficient of the pellets was determined using the equation of Fick's second law, which resulted in values between 0.84-1.94×10-10 m²/s. The drying kinetics was modeled using Page, Modified Page, Root of time, Exponential, Logarithmic, Two-Terms, Modified Henderson-Pabis and Weibull models. In addition, two new models, referred to as 'Proposed' models 1 and 2, were used to simulate this process. According to the statistical tests applied, the models that best fitted the experimental data were Modified Henderson-Pabis, Weibull and Proposed model 2, respectively. Bifactorial analysis of variance ANOVA showed that Diet A (fishmeal 44%, spirulin 9%, fish oil 1% and cornstarch 36%) presented the highest diffusion coefficient values, which were favored by the temperature increase in the drying process.
Resumo:
Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.
Resumo:
Baru (Dipteryx alata Vog.), a species of legume found in the Brazilian savannas, was investigated in this study for the composition of its flesh and seed. Thermal analyses, Thermogravimetry (TG), and Differential Scanning Calorimetry (DSC) were used to investigate the proteins in defatted meal, concentrate, and protein isolate. The protein concentrate was extracted at pH 10, followed by a precipitation at the isoelectric point to obtain the isolate that was spray dried. The thermogravimetric curves were obtained under a nitrogen atmosphere with a 100 mL/minutes flow. The initial, final and peak temperatures and mass loss were analyzed. Within the performed temperature ranges studied, the defatted meal and concentrate presented four steps of mass loss, while the isolate showed only two steps. The protein content of defatted meal from Baru nuts was higher than that of the isolate. On the other hand, there was a reduction in enthalpy, which suggests that the process applied to obtain the baru concentrate and isolate led to protein denaturation.
Resumo:
Food processes must ensure safety and high-quality products for a growing demand consumer creating the need for better knowledge of its unit operations. The Computational Fluid Dynamics (CFD) has been widely used for better understanding the food thermal processes, and it is one of the safest and most frequently used methods for food preservation. However, there is no single study in the literature describing thermal process of liquid foods in a brick shaped package. The present study evaluated such process and the influence of its orientation on the process lethality. It demonstrated the potential of using CFD to evaluate thermal processes of liquid foods and the importance of rheological characterization and convection in thermal processing of liquid foods. It also showed that packaging orientation does not result in different sterilization values during thermal process of the evaluated fluids in the brick shaped package.
Resumo:
This study analyzed the drying process and the seed quality of adzuki beans (Vigna angularis). Grains of adzuki beans, with moisture content of 1.14 (decimal dry basis) at harvest and dried until the moisture content of 0.11 (decimal dry basis.) were used. Drying was done in an experimental drier maintened at controlled temperatures of 30, 40, 50, 60, and 70 ºC and relative humidity of 52.0, 28.0, 19.1, 13.1, and 6.8%, respectively. Physiological and technological seed quality was evaluated using the germination test, Index of Germination Velocity (IGV), electrical conductivity, and water absorption, respectively. Under the conditions tested in the present study, it can be concluded that drying time for adzuki beans decreases with the higher air temperatures of 60 and 70 ºC, and it affected the physiological and technological seed quality. Thus, to avoid compromising adzuki seeds quality, it is recommended to promote its drying up to 50 ºC.