988 resultados para Temperatures baixes
Resumo:
The Marine Isotope Stage (MIS) 11 (424-374 ka) was characterized by a protracted deglaciation and an unusually long climatic optimum. It remains unclear to what degree the climate development during this interglacial reflects the unusually weak orbital forcing or greenhouse gas trends. Previously, arguments about the duration and timing of the MIS11 climatic optimum and about the pace of the deglacial warming were based on a small number of key records, which appear to show regional differences. In order to obtain a global signal of climate evolution during MIS11, we compiled a database of 78 sea surface temperature (SST) records from 57 sites spanning MIS11, aligned these individually on the basis of benthic (N = 28) or planktonic (N = 31) stable oxygen isotope curves to a common time frame and subjected 48 of them to an empirical orthogonal function (EOF) analysis. The analysis revealed a high commonality among all records, with the principal SST trend explaining almost 49% of the variability. This trend indicates that on the global scale, the surface ocean underwent rapid deglacial warming during Termination V, in pace with carbon dioxide rise, followed by a broad SST optimum centered at ~410 kyr. The second EOF, which explained ~18% of the variability, revealed the existence of a different SST trend, characterized by a delayed onset of the temperature optimum during MIS11 at ~398 kyr, followed by a prolonged warm period lasting beyond 380 kyr. This trend is most consistently manifested in the mid-latitude North Atlantic and Mediterranean Sea and is here attributed to the strength of the Atlantic meridional overturning circulation. A sensitivity analysis indicates that these results are robust to record selection and to age-model uncertainties of up to 3-6 kyr, but more sensitive to SST seasonal attribution and SST uncertainties >1 °C. In order to validate the CCSM3 (Community Climate System Model, version 3) predictive potential, the annual and seasonal SST anomalies recorded in a total of 74 proxy records were compared with runs for three time slices representing orbital configuration extremes during the peak interglacial of MIS11. The modeled SST anomalies are characterized by a significantly lower variance compared to the reconstructions. Nevertheless, significant correlations between proxy and model data are found in comparisons on the seasonal basis, indicating that the model captures part of the long-term variability induced by astronomical forcing, which appears to have left a detectable signature in SST trends.
Resumo:
Melt rate and surface temperature on the Greenland ice sheet are parameterized in terms of snow accumulation, mean annual air temperatur and mean July air temperature. Melt rates are calculated using positive degree-days, and firn warming (i.e. the positive deviation of the temperature at 10-15 m depth from the mean annual air temperature) is estimated from the calculated amount of refrozen melt water in the firn. A comparison between observed and calculated melt rates shows that the parameterization provides a reasonable estimate of the present ablation rates in West Greenland between 61°N and 76°N. The average equilibrium line elevation is estimated to be about 1150 m and 1000 m for West and East Greenland respectively, which is several hundred meter lower than previous estimates. However, the total annual ablation from the ice sheet is found to be about 280 km**3 of water per year which agrees well with most other estimates. The melt-rate model predicts significant melting and consequently significant firn warming even at the highest elevations of the South Greenland ice sheet, whereas a large region of central Greenland north of 70° N experiences little or no summer melting. This agrees with the distribution of the dry snow facics as given by BENSON (1962).
Resumo:
Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.
Resumo:
In this manuscript, we present rock magnetic results of samples recovered during Leg 183. The Leg 183 cores were recovered from six drill sites and display variable rock magnetic properties. The differences in the rock magnetic properties are a function of mineralogy and alteration. Cretaceous subaerial basalt samples with titanomagnetite exhibit a strong Verwey transition in the vicinity of 110 K and have frequency-dependent susceptibility curves that resemble those of synthetic (titano) magnetites. These results are in good agreement with the thermomagnetic characteristics where titanomagnetites with Curie temperatures of ~580°C were identified. The hysteresis ratios suggest that the bulk magnetic grain size is in the psuedo-single-domain boundary. These subaerial basalts experienced high-temperature oxidation and maintained reliable paleomagnetic records. In contrast, the 34-Ma submarine pillow basalts do not show the Verwey transition during the low-temperature experiments. Thermomagnetic analysis shows that the remanent magnetization in this group is mainly carried by a thermally unstable mineral titanomaghemite. The frequency-dependent relationships are opposite of those from the first group and show little sign of titanomagnetite characteristics. Rocks from the third group are oxidized titanomagnetites and have multiple magnetic phases. They have irreversible thermaomagnetic curves and hysteresis ratios clustering toward the multidomain region (with higher Hcr/Hc ratios). The combined investigation suggests that variations in magnetic properties correlate with changes in lithology, which results in differences in the abundance and size of magnetic minerals. The rock magnetic data on Leg 183 samples clearly indicate that titanomagnetite is the dominant mineral and the primary remanence carrier in subaerial basalt. The generally good magnetic stability and other properties exhibited by titanomagnetite-bearing rocks support the inference that the ChRM isolated from the Cretaceous sites were acquired during the Cretaceous Normal Superchron. The stable inclinations identified from these samples are therefore useful for future tectonic studies.