880 resultados para Taste heterogeneity
Resumo:
A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.
Resumo:
Four sites located in the north-eastern region of the United States of America have been chosen to investigate the impacts of soil heterogeneity in the transport of solutes (bromide and chloride) through the vadose zone (the zone in the soil that lies below the root zone and above the permanent saturated groundwater). A recently proposed mathematical model based on the cumulative beta distribution has been deployed to compare and contrast the regions' heterogeneity from multiple sample percolation experiments. Significant differences in patterns of solute leaching were observed even over a small spatial scale, indicating that traditional sampling methods for solute transport, for example the gravity pan or suction lysimeters, or more recent inventions such as the multiple sample percolation systems may not be effective in estimating solute fluxes in soils when a significant degree of soil heterogeneity is present. Consequently, ignoring soil heterogeneity in solute transport studies will likely result in under- or overprediction of leached fluxes and potentially lead to serious pollution of soils and/or groundwater. The cumulative beta distribution technique is found to be a versatile and simple technique of gaining valuable information regarding soil heterogeneity effects on solute transport. It is also an excellent tool for guiding future decisions of experimental designs particularly in regard to the number of samples within one site and the number of sampling locations between sites required to obtain a representative estimate of field solute or drainage flux.
Resumo:
In this paper, we study the surface heterogeneity and the surface mediation on the intermolecular potential energy for nitrogen adsorption on graphitized thermal carbon black (GTCB). The surface heterogeneity is modeled as the random distribution of effective carbonyl functional groups on the graphite surface. The molecular parameters and the discrete charges of this carbonyl group are taken from Jorgensen, et al. (J. Am. Chem. Soc., (1984) 106, 6638) while those for nitrogen (dispersive parameters and discrete charges) are taken from Murthy et al. (Mol. Phys., (1983) 50, 531) in our Grand Canonical Monte Carlo (GCMC) simulation. The solid surface mediation in the reduction of intermolecular potential energy between two fluid molecules was taken from a recent work by Do et al. (Langmuir, (2004) 20, 7623). Our simulation results accounting for the surface heterogeneity and surface mediation on intermolecular potential energy were compared with the experimental data of nitrogen at 77 and 90 K. The solid-fluid dispersive parameters are determined from the Lorentz-Berthelot (LB) rule. The fraction of the graphite surface covered with carbonyl functional groups was then derived from the consideration of the Henry constant, and for the data of Kruk et al. (Langmuir, (1999) 15, 1435) we have found that 1% of their GTCB surface is covered with effective carbonyl functional groups. The damping constant, due to surface mediation, was determined from the consideration of the portion of the adsorption isotherm where the first layer is being completed, and it was found to take a value of 0.0075. With these parameters, we have found that the GCMC simulation results describe the data over the complete range of pressure substantially better than any other MC models in the literature. The implication of this work is demonstrated with local adsorption isotherms of 10 and 20 A slit pores. One was obtained without allowance for surface mediation, while the other correctly accounts for these factors. The two local isotherms differ substantially, and the implication is that if we used incorrect local isotherms (i.e. without the surface mediation) the pore size distribution would be incorrectly derived.
Resumo:
As for other complex diseases, linkage analyses of schizophrenia (SZ) have produced evidence for numerous chromosomal regions, with inconsistent results reported across studies. The presence of locus heterogeneity appears likely and may reduce the power of linkage analyses if homogeneity is assumed. In addition, when multiple heterogeneous datasets are pooled, intersample variation in the proportion of linked families ( a) may diminish the power of the pooled sample to detect susceptibility loci, in spite of the larger sample size obtained. We compare the significance of linkage. findings obtained using allele- sharing LOD scores ( LODexp) - which assume homogeneity - and heterogeneity LOD scores ( HLOD) in European American and African American NIMH SZ families. We also pool these two samples and evaluate the relative power of the LODexp and two different heterogeneity statistics. One of these ( HLOD- P) estimates the heterogeneity parameter a only in aggregate data, while the second ( HLOD- S) determines a separately for each sample. In separate and combined data, we show consistently improved performance of HLOD scores over LODexp. Notably, genome-wide significant evidence for linkage is obtained at chromosome 10p in the European American sample using a recessive HLOD score. When the two samples are combined, linkage at the 10p locus also achieves genome-wide significance under HLOD- S, but not HLOD- P. Using HLOD- S, improved evidence for linkage was also obtained for a previously reported region on chromosome 15q. In linkage analyses of complex disease, power may be maximised by routinely modelling locus heterogeneity within individual datasets, even when multiple datasets are combined to form larger samples.
Resumo:
Structured soils are characterized by the presence of inter- and intra-aggregate pore systems and aggregates, which show varying chemical, physical, and biological properties depending on the aggregate type and land use system. How far these aspects also affect the ion exchange processes and to what extent the interaction between the carbon distribution and kind of organic substances affect the internal soil strength as well as hydraulic properties like wettability are still under discussion. Thus, the objective of this research was to clarify the effect of soil aggregation on physical and chemical properties of structured soils at two scales: homogenized material and single aggregates. Data obtained by sequentially peeling off soil aggregates layers revealed gradients in the chemical composition from the aggregate surface to the aggregate core. In aggregates from long term untreated forest soils we found lower amounts of carbon in the external layer, while in arable soils the differentiation was not pronounced. However, soil aggregates originating from these sites exhibited a higher concentration of microbial activity in the outer aggregate layer and declined towards the interior. Furthermore, soil depth and the vegetation type affected the wettability. Aggregate strength depended. on water suction and differences in tillage treatments.
Resumo:
Bone cell cultures were evaluated to determine if osteogenic cell populations at different skeletal sites in the horse are heterogeneous. Osteogenic cells were isolated from cortical and cancellous bone in vitro by an explant culture method. Subcultured cells were induced to differentiate into bone-forming osteoblasts. The osteoblast phenotype was confirmed by immunohistochemical testing for osteocalcin and substantiated by positive staining of cells for alkaline phosphatase and the matrix materials collagen and glycosaminoglycans. Bone nodules were stained by the von Kossa method and counted. The numbers of nodules produced from osteogenic cells harvested from different skeletal sites were compared with the use of a mixed linear model. On average, cortical bone sites yielded significantly greater numbers of nodules than did cancellous bone sites. Between cortical bone sites, there was no significant difference in nodule numbers. Among cancellous sites, the radial cancellous bone yielded significantly more nodules than did the tibial cancellous bone. Among appendicular skeletal sites, tibial metaphyseal bone yielded significantly fewer nodules than did all other long bone sites. This study detected evidence of heterogeneity of equine osteogenic cell populations at various skeletal sites. Further characterization of the dissimilarities is warranted to determine the potential role heterogeneity plays in differential rates of fracture healing between skeletal sites.
Resumo:
Side population (SP) cells in the adult kidney are proposed to represent a progenitor population. However, the size, origin, phenotype, and potential of the kidney SP has been controversial. In this study, the SP fraction of embryonic and adult kidneys represented 0.1 to 0.2% of the total viable cell population. The immunophenotype and the expression profile of kidney SP cells was distinct from that of bone marrow SP cells, suggesting that they are a resident nonhematopoietic cell population. Affymetrix expression profiling implicated a role for Notch signaling in kidney SP cells and was used to identify markers of kidney SP. Localization by in situ hybridization confirmed a primarily proximal tubule location, supporting the existence of a tubular niche, but also revealed considerable heterogeneity, including the presence of renal macrophages. Adult kidney SP cells demonstrated multilineage differentiation in vitro, whereas microinjection into mouse metanephroi showed that SP cells had a 3.5- to 13-fold greater potential to contribute to developing kidney than non-SP main population cells. However, although reintroduction of SP cells into an Adriamycin-nephropathy model reduced albuminuria:creatinine ratios, this was without significant tubular integration, suggesting a humoral role for SP cells in renal repair. The heterogeneity of the renal SP highlights the need for further fractionation to distinguish the cellular subpopulations that are responsible for the observed multilineage capacity and transdifferentiative and humoral activities.
Resumo:
Quantitatively predicting mass transport rates for chemical mixtures in porous materials is important in applications of materials such as adsorbents, membranes, and catalysts. Because directly assessing mixture transport experimentally is challenging, theoretical models that can predict mixture diffusion coefficients using Only single-component information would have many uses. One such model was proposed by Skoulidas, Sholl, and Krishna (Langmuir, 2003, 19, 7977), and applications of this model to a variety of chemical mixtures in nanoporous materials have yielded promising results. In this paper, the accuracy of this model for predicting mixture diffusion coefficients in materials that exhibit a heterogeneous distribution of local binding energies is examined. To examine this issue, single-component and binary mixture diffusion coefficients are computed using kinetic Monte Carlo for a two-dimensional lattice model over a wide range of lattice occupancies and compositions. The approach suggested by Skoulidas, Sholl, and Krishna is found to be accurate in situations where the spatial distribution of binding site energies is relatively homogeneous, but is considerably less accurate for strongly heterogeneous energy distributions.
Resumo:
Increased expression of the epithelial mucin MUC1 has been linked to tumor aggressiveness in human breast carcinoma. Recent studies have demonstrated that overexpression of MUC1 interferes with cell-substrate and cell-cell adhesion by masking cell surface integrins and E-cadherin. Additionally, the cytoplasmic tail of MUC1 is involved in signal transduction and interactions with catenins. In the present study, we have examined the in vitro expression of MUC1 mRNA and protein in a panel of 14 human breast cancer cell lines using northern blotting, western blotting, immunocytochemistry, and flow cytometry. Considerable variability of expression was noted not only between cell lines but also within several individual lines. Many cell lines such as BT 20, KPL-1, and T47D expressed abundant MUC1 whilst others such as MDA-MB-231 and MCF-7 showed intermediate expression, and MDA-MB-435 and MDA-MB-453 expressed very low levels. Low levels of MUC1 expression were associated with decreased expression of cytokeratin and increased expression of vimentin. Additionally, 12 of the cell lines were established as xenografts in immunocompromised (SCID) mice, and MUC1 expression in both the primary tumors as well as metastases was assessed immunohistochemically. In general, in vivo expression mirrored in vitro expression, although there was reduced in vivo expression in T47D and ZR-75-1 xenografts. Although we showed no correlation between tumorigenicity or metastasis and MUC1 expression, this study will assist development of experimental models to assess the influence of MUC1 of on breast cancer progression.