951 resultados para Table manipulation (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The material presented in this thesis may be viewed as comprising two key parts, the first part concerns batch cryptography specifically, whilst the second deals with how this form of cryptography may be applied to security related applications such as electronic cash for improving efficiency of the protocols. The objective of batch cryptography is to devise more efficient primitive cryptographic protocols. In general, these primitives make use of some property such as homomorphism to perform a computationally expensive operation on a collective input set. The idea is to amortise an expensive operation, such as modular exponentiation, over the input. Most of the research work in this field has concentrated on its employment as a batch verifier of digital signatures. It is shown that several new attacks may be launched against these published schemes as some weaknesses are exposed. Another common use of batch cryptography is the simultaneous generation of digital signatures. There is significantly less previous work on this area, and the present schemes have some limited use in practical applications. Several new batch signatures schemes are introduced that improve upon the existing techniques and some practical uses are illustrated. Electronic cash is a technology that demands complex protocols in order to furnish several security properties. These typically include anonymity, traceability of a double spender, and off-line payment features. Presently, the most efficient schemes make use of coin divisibility to withdraw one large financial amount that may be progressively spent with one or more merchants. Several new cash schemes are introduced here that make use of batch cryptography for improving the withdrawal, payment, and deposit of electronic coins. The devised schemes apply both to the batch signature and verification techniques introduced, demonstrating improved performance over the contemporary divisible based structures. The solutions also provide an alternative paradigm for the construction of electronic cash systems. Whilst electronic cash is used as the vehicle for demonstrating the relevance of batch cryptography to security related applications, the applicability of the techniques introduced extends well beyond this.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.