942 resultados para Systemic Interleukin-1-beta
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.
Resumo:
Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.
Resumo:
Hypnea cervicornis agglutinin (HCA), a lectin isolated from the red marine alga has been previously shown to have an antinociceptive effect. In the present study in rats, mechanisms of action of HCA were addressed regarding mechanical hypernociception induced by carrageenan, ovalbumin (as antigen), and also by prostaglandin E(2) in rats. The lectin administered intravenously inhibited carrageenan- and antigen-induced hypernociception at 1,3, 5 and 7 h. This inhibitory effect was completely prevented when lectin was combined with mucin, demonstrating the role of carbohydrate-binding sites. The inhibition of inflammatory hypernociception by HCA was associated with the prevention of neutrophil recruitment to the plantar tissue of rats but was not associated with the inhibition of the release of pro-hypernociceptive cytokines (TNF-alpha, IL-1 beta and CINC-1). HCA also blocked mechanical hypernociception induced by PGE(2), which was prevented by the administration of nitric oxide synthase inhibitors. These results were corroborated by the increased circulating levels of NO metabolites following HCA treatment. These findings suggest that the anti-hypernociceptive effects of HCA are not associated with the inhibition of pro-inflammatory cytokine production. However, these effects seem to involve the inhibition of neutrophil migration and also the increase in NO production. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-alpha, IL-1 beta and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-alpha, IL-1 beta and KC concentration. In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.
Resumo:
BACKGROUND AND PURPOSE We investigated the effect of the phosphodiesterase-5 inhibitor, tadalafil, on the acute hypernociception in rat models of arthritis. EXPERIMENTAL APPROACH Rats were treated with either an intra-articular injection of zymosan (1 mg) or surgical transection of the anterior cruciate ligament (as an osteoarthritis model). Controls received saline intra-articular or sham operation respectively. Joint pain was evaluated using the articular incapacitation test measured over 6 h following zymosan or between 4 and 7 days after anterior cruciate ligament transection. Cell counts, tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), and the chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured in joint exudates 6 h after zymosan. Groups received tadalafil (0.02-0.5 mg.kg(-1) per os) or saline 2 h after intra-articular zymosan. Other groups received the mu-opioid receptor antagonist naloxone or the cGMP inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) before tadalafil. KEY RESULTS Tadalafil dose-dependently inhibited hypernociception in zymosan and osteoarthritis models. In zymosan-induced arthritis, tadalafil significantly decreased cell influx and TNF-alpha release but did not alter IL-1 or CINC-1 levels. Pretreatment with ODQ but not with naloxone prevented the anti-inflammatory effects of tadalafil. CONCLUSIONS AND IMPLICATIONS Therapeutic oral administration of tadalafil provided analgesia mediated by guanylyl cyclase and was independent of the release of endogenous opioids. This effect of tadalafil was associated with a decrease in neutrophil influx and TNF-alpha release in inflamed joints.
Resumo:
Quercetin (1) is known to have both antioxidant and antinociceptive effects. However, the mechanism involved in its antinociceptive effect is not fully elucidated. Cytokines and reactive oxygen species have been implicated in the cascade of events resulting in inflammatory pain. Therefore, we evaluated the antinociceptive mechanism of 1 focusing on the role of cytokines and Oxidative stress. Intraperitoneal and oral treatments with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid and phenyl-p-benzoquinone and also the second phase of formalin- and carrageenin-induced mechanical hypernociception. Compound I also inhibited the hypernociception induced by cytokines (e.g., TNF alpha and CXCL1), but not by inflammatory mediators that directly sensitize the nociceptor such as PGE(2) and dopamine. On the other hand, 1 reduced carrageenin-induced IL-1 beta production as well as carrageenin-induced decrease of reduced glutathione (GSH) levels. These results suggest that I exerts its analgesic effect by inhibiting pro-nociceptive cytokine production and the oxidative imbalance mediation of inflammatory pain.
Resumo:
In the present study, we investigated the involvement of resident cell and inflammatory mediators in the neutrophil migration induced by chemotactic activity of a glucose/mannose-specific lectin isolated from Dioclea rostrata seeds (DrosL). Rats were injected i.p. with DrosL (125-1000 mu g/cavity), and at 2-96 h thereafter the leukocyte counts in peritoneal fluid were determined. DrosL-induced a dose-dependent neutrophil migration accumulation, which reached maximal response at 24 h after injection and declines thereafter. The carbohydrate ligand nearly abolished the neutrophil influx. Pre-treatment of peritoneal cavities with thioglycolate which increases peritoneal macrophage numbers, enhanced neutrophil migration induced by DrosL by 303%. However, the reduction of peritoneal mast cell numbers by treatment of the cavities with compound 48/80 did not modify DrosL-induced neutrophil migration. The injection into peritoneal cavities of supernatants from macrophage cultures stimulated with DrosL (125, 250 and 500 mu g/ml) induced neutrophil migration. In addition, DrosL treatment induced cytokines (TNF-alpha, IL-1 beta and CINC-1) and NO release into the peritoneal cavity of rats. Finally, neutrophil chemotaxis assay in vitro showed that the lectin (15 and 31 mu g/ml) induced neutrophil chemotaxis by even 180%. In conclusion, neutrophil migration induced by D. rostrata lectin occurs by way of the release of NO and cytokines such as IL-1 beta, TNF-alpha and CINC-1. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Cell resistance to glucocorticoids is a major problem in the treatment of nasal polyposis (NP). The objectives of this study were to observe the effect of budesonide on the expression of IL-1 beta, TNF-alpha, granulocyte macrophage-colony stimulating factor, intercellular adhesion molecule (ICAM)-1, basic fibroblast growth factor, eotaxin-2, glucocorticoid receptor (GR)-alpha, GR-beta, c-Fos and p65 in nasal polyps and to correlate their expression to clinical response. Biopsies from nasal polyps were obtained from 20 patients before and after treatment with topical budesonide. Clinical response to treatment was monitored by a questionnaire and nasal endoscopy. The mRNA levels of the studied genes were measured by real-time quantitative (RQ)-PCR. There was a significant decrease in the expression of TNF-alpha (P < 0.05), eotaxin-2 (P < 0.05) and p65 (P < 0.05) in NP after treatment. Poor responders to glucocorticoids showed higher expression of IL-1 beta (3.74 vs. 0.14; P < 0.005), ICAM-1 (1.91 vs. 0.29; P < 0.05) and p65 (0.70 vs. 0.16; P < 0.05) before treatment. Following treatment, IL-1 beta (4.18 vs. 0.42; P < 0.005) and GR-beta (0.95 vs. 0.28; P < 0.05) mRNA expression was higher in this group. Topical budesonide reduced the expression of TNF-alpha, eotaxin-2 and p65. Poor responders to topical budesonide exhibit higher levels of IL-1 beta, ICAM-1 and nuclear factor (NF)-kappa B at diagnosis and higher expression of both IL-1 beta and GR-beta after treatment. These results emphasize the anti-inflammatory action of topical budesonide at the molecular level and its importance in the treatment of NP. Nevertheless, IL-1 beta, ICAM-1 and NF-kappa B may be associated with primary resistance to glucocorticoids in NP, whereas higher expression of GR-beta in poor responders only after glucocorticoid treatment may represent a secondary drug resistance mechanism in this disease.
Resumo:
Neuroimmunomodulation describes the field focused on understanding the mechanisms by which the central nervous system interacts with the immune system, potentially leading to changes in animal behavior. Nonetheless, not many articles dealing with neuroimmunomodulation employ behavior as an analytical endpoint. Even fewer papers deal with social status as a possible modifier of neuroimmune phenomena. In the described sets of experiments, we tackle both, using a paradigm of social dominance and subordination. We first review data on the effects of different ranks within a stable hierarchical relationship. Submissive mice in this condition display more anxiety-like behaviors, have decreased innate immunity, and show a decreased resistance to implantation and development of melanoma metastases in their lungs. This suggests that even in a stable, social, hierarchical rank, submissive animals may be subjected to higher levels of stress, with putative biological relevance to host susceptibility to disease. Second, we review data on how dominant and submissive mice respond differentially to lipopolysaccharide (LPS), employing a motivational perspective to sickness behavior. Dominant animals display decreased number and frequency in several aspects of behavior, particularly agonistic social interaction, that is, directed toward the submissive cage mate. This was not observed in submissive mice that maintained the required behavior expected by its dominant mate. Expression of sickness behavior relies on motivational reorganization of priorities, which are different along different social ranks, leading to diverse outcomes. We suggest that in vitro assessment of neuroimmune phenomena can only be understood based on the behavioral context in which they occur.
Resumo:
Candida albicans is recognized by phagocytic cells through a set of recognition receptors patterns. Recently, we showed the importance of TLR2 in the regulation of neutrophil survival after C. albicans infection. In the present work, we analyzed the involvement of TLR4 in the recognition of C. albicans by neutrophils and macrophages. Our results show that the absence of functional TLR4 resulted in lower chemotaxis of neutrophils to the site of infection, lower levels of TNF-alpha, CXCL1 and nitric oxide, and dissemination and persistence of the pathogen in lymph nodes and spleen. In vitro, the phagocytic activity, nitric oxide production and myeloperoxidase activity, CXCL1, IL-1 beta production by neutrophils from TLR4-defective mice were not changed. In contrast, macrophages from TLR4-defective mice demonstrated lower phagocytosis and lower levels of CXCL1, IL-1 beta and TNF-alpha. Together, these data demonstrate that TLR4 signals are important for the recognition of C. albicans by macrophages and their absence allows persistence of the infection.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
1. The past 15 years has seen the emergence of a new field of neuroscience research based primarily on how the immune system and the central nervous system can interact. A notable example of this interaction occurs when peripheral inflammation, infection or tissue injury activates the hypothalamic- pituitary-adrenal axis (HPA). 2. During such assaults, immune cells release the pro- inflammatory cytokines interleukin (IL)-1, IL-6 and tumour necrosis factor-alpha into the general circulation. 3. These cytokines are believed to act as mediators for HPA axis activation. However, physical limitations of cytokines impede their movement across the blood-brain barrier and, consequently, it has been unclear as to precisely how and where IL-1beta signals cross into the brain to trigger HPA axis activation. 4. Evidence from recent anatomical and functional studies suggests two neuronal networks may be involved in triggering HPA axis activity in response to circulating cytokines. These are catecholamine cells of the medulla oblongata and the circumventricular organs (CVO). 5. The present paper examines the role of CVO in generating HPA axis responses to pro-inflammatory cytokines and culminates with a proposed model based on cytokine signalling primarily involving the area postrema and catecholamine cells in the ventrolateral and dorsal medulla.
Resumo:
The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.
Resumo:
It has been reported that there is a relationship between a single-nucleotide polymorphism (SNP) in the promoter region of the CD 14 gene at position -159 (C-->T) and infectious diseases. The aim of the present study was to test the hypthesis that expression of this SNP correlates with periodontal disease in a Japanese population. The CD14 genotype was determined in 163 subjects with periodontitis and in 104 age- and gender-matched control subjects without periodontitis. The genotype distribution and allele frequency within the periodontitis patients were not significantly different from those of control subjects. There was, however, a significant difference in the genotype distribution between young patients (< 35 yrs) and older patients (greater than or equal to 35 yrs). These findings suggest that CD14-159C/T polymorphism is not related to the development of periodontitis in a Japanese population, but that, within the periodontitis subjects, expression of the SNP may be related to early disease activity.
Resumo:
We have developed a competitive RT-PCR assay, adapted from Lewohl et al. [Brain Res. Brain Res. Protoc. 1 (1997) 347]. for the quantitation of GABA, receptor beta isoforms in human brain using an internal standard that shares high sequence homology to the targets. The internal standard is identical to the beta(1) sequence except for a 61 bp deletion and the incorporation of a Hind III restriction enzyme site. Unlike traditional competitive RT-PCR, which requires a range of internal standard concentrations to be titrated against a constant amount of unknown, this method relies on a standard curve for quantitation of each sample and thus permits increased sample throughput. This method is suitable for the quantitation of beta(1), beta(2) and beta(3) isoforms of the GABA(A) receptor in human alcoholic and control brain. (C) 2003 Elsevier Science B.V. All rights reserved.