921 resultados para Sympatric speciation
Resumo:
Abstract: Background: Amoebae are phagocytic protists where genetic exchanges might take place between amoeba-resistant bacteria. These amoebal pathogens are able to escape the phagocytic behaviour of their host. They belong to different bacterial phyla and often show a larger genome size than human-infecting pathogens. This characteristic is proposed to be the result of frequent gene exchanges with other bacteria that share a sympatric lifestyle and contrasts with the genome reduction observed among strict human pathogens.Results: We sequenced the genome of a new amoebal pathogen, Legionella drancourtii, and compared its gene content to that of a Chlamydia-related bacterium, Parachlamydia acanthamoebae. Phylogenetic reconstructions identified seven potential horizontal gene transfers (HGTs) between the two amoeba-resistant bacteria, including a complete operon of four genes that encodes an ABC-type transporter. These comparisons pinpointed potential cases of gene exchange between P. acanthamoebae and Legionella pneumophila, as well as gene exchanges between other members of the Legionellales and Chlamydiales orders. Moreover, nine cases represent possible HGTs between representatives from the Legionellales or Chlamydiales and members of the Rickettsiales order.Conclusions: This study identifies numerous gene exchanges between intracellular Legionellales and Chlamydiales bacteria, which could preferentially occur within common inclusions in their amoebal hosts. Therefore it contributes to improve our knowledge on the intra-amoebal gene properties associated to their specific lifestyle.
Resumo:
The common shrew (Sorer araneus) is subdivided into several chromosomal races. As hybrid zones between them have been characterized, this organism is of particular interest in studying the role of chromosomes in speciation. Six microsatellite loci were used to evaluate the level of gene how in the S. araneus hybrid zone between the Cordon and Valais races. Most of these loci were very polymorphic, the total number of alleles detected per locus ranging from 3 to 20. Using Mantel tests, we showed that the effect of rivers as barriers to gene flow is less important at this sampling scale. The effect of the chromosomal race is of particular importantance in diminishing gene flow.
Resumo:
Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species-rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species-rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non-neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes.
Resumo:
The restriction fragment length polymorphism of the 195 bp repeated DNA sequence of Trypanosoma cruzi was analyzed among 23 T. cruzi stocks giving a reliable picture of the whole phylogenetic variability of the species. The profiles observed with the enzymes Hinf I and Hae III were linked together and supported the existence of two groups. Group 1 shows a 195 bp repeated unit (Hinf I) and high molecular weight DNA (Hae III), while group 2 presents a ladder profile for each enzyme, which is a characteristic of tandemly repeated DNA. The two groups, respectively, clustered stocks pertaining to the two principal lineages evidenced by isoenzyme and RAPD markers. The congruence among these three independent genomic markers corroborates the existence of two real phylogenetic lineages in T. cruzi. The specific monomorphic profiles for each major phylogenetic lineage suggest the existence of ancient sexuality and cryptic biological speciation.
Mechanisms of reproductive isolation between an ant species of hybrid origin and one of its parents.
Resumo:
The establishment of new species by hybridization is difficult because it requires the development of reproductive isolation (RI) in sympatry to escape the homogenizing effects of gene flow from the parental species. Here we investigated the role of two pre- and two postzygotic mechanisms of RI in a system comprising two interdependent Pogonomyrmex harvester ant lineages (the H1 and H2 lineages) of hybrid origin and one of their parental species (P. rugosus). Similar to most other ants, P. rugosus is characterized by an environmental system of caste determination with female brood developing either into queens or workers depending on nongenetic factors. By contrast, there is a strong genetic component to caste determination in the H1 and H2 lineages because the developmental fate of female brood depends on the genetic origin of the parents, with interlineage eggs developing into workers and intralineage eggs developing into queens. The study of a mixed mating aggregation revealed strong differences in mating flight timing between P. rugosus and the two lineages as a first mechanism of RI. A second important prezygotic mechanism was assortative mating. Laboratory experiments also provided support for one of the two investigated mechanisms of postzygotic isolation. The majority of offspring produced from the few matings between P. rugosus and the lineages aborted at the egg stage. This hybrid inviability was under maternal influence, with hybrids produced by P. rugosus queens being always inviable whereas a small proportion of H2 lineage queens produced large numbers of adult hybrid offspring. Finally, we found no evidence that genetic caste determination acted as a second postzygotic mechanism reducing gene flow between P. rugosus and the H lineages. The few viable P. rugosus-H hybrids were not preferentially shunted into functionally sterile workers but developed into both workers and queens. Overall, these results reveal that the nearly complete (99.5%) RI between P. rugosus and the two hybrid lineages stems from the combination of two typical prezygotic mechanisms (mating time divergence and assortative mating) and one postzygotic mechanism (hybrid inviability).
Resumo:
Human and chimpanzee genomes are 98.8% identical within comparable sequences. However, they differ structurally in nine pericentric inversions, one fusion that originated human chromosome 2, and content and localization of heterochromatin and lineage-specific segmental duplications. The possible functional consequences of these cytogenetic and structural differences are not fully understood and their possible involvement in speciation remains unclear. We show that subtelomeric regions-regions that have a species-specific organization, are more divergent in sequence, and are enriched in genes and recombination hotspots-are significantly enriched for species-specific histone modifications that decorate transcription start sites in different tissues in both human and chimpanzee. The human lineage-specific chromosome 2 fusion point and ancestral centromere locus as well as chromosome 1 and 18 pericentric inversion breakpoints showed enrichment of human-specific H3K4me3 peaks in the prefrontal cortex. Our results reveal an association between plastic regions and potential novel regulatory elements.
Resumo:
Morphological variation among geographic populations of the New World sand fly Lutzomyia quinquefer (Diptera, Phlebotominae) was analyzed and patterns detected that are probably associated with species emergence. This was achieved by examining the relationships of size and shape components of morphological attributes, and their correlation with geographic parameters. Quantitative and qualitative morphological characters are described, showing in both sexes differences among local populations from four Departments of Bolivia. Four arguments are then developed to reject the hypothesis of environment as the unique source of morphological variation: (1) the persistence of differences after removing the allometric consequences of size variation, (2) the association of local metric properties with meristic and qualitative attributes, rather than with altitude, (3) the positive and significant correlation between metric and geographic distances, and (4) the absence of a significant correlation between altitude and general-size of the insects.
Resumo:
The use of biochemical and genetic characters to explore species or population relationships has been applied to taxonomic questions since the 60s. In responding to the central question of the evolutionary history of Triatominae, i.e. their monophyletic or polyphyletic origin, two important questions arise (i) to what extent is the morphologically-based classification valid for assessing phylogenetic relationships? and (ii) what are the main mechanisms underlying speciation in Triatominae? Phenetic and genetic studies so far developed suggest that speciation in Triatominae may be a rapid process mainly driven by ecological factors.
Resumo:
The drivers of species diversification and persistence are of great interest to current biogeography, especially in those global biodiversity hotspots' harbouring most of Earth's animal and plant life. Classical multispecies biogeographical work has yielded fascinating insights into broad-scale patterns of diversification, and DNA-based intraspecific phylogeographical studies have started to complement this picture at much finer temporal and spatial scales. The advent of novel next-generation sequencing (NGS) technologies provides the opportunity to greatly scale up the numbers of individuals, populations and species sampled, potentially merging intraspecific and interspecific approaches to biogeographical inference. Here, we outline these prospects and issues by using the example of an undisputed hotspot, the Cape of southern Africa. We outline the current state of knowledge on the biogeography of species diversification within the Cape, review the literature for phylogeographical evidence of its likely drivers and mechanisms, and suggest possible ways forward based on NGS approaches. We demonstrate the potential of these methods and current bioinformatic issues with the help of restriction-site-associated DNA (RAD) sequencing data for three highly divergent species of the Restionaceae, an important plant radiation in the Cape. A thorough understanding of the mechanisms that facilitate species diversification and persistence in spatially structured, species-rich environments will require the adoption of novel genomic and bioinformatic tools in biogeographical studies.
Resumo:
Studies were performed on five Brazilian populations of Lutzomyia longipalpis: Salvaterra (PA), São José do Ribamar (MA), Canindé (CE), Natal (RN) and Gruta da Lapinha, Lagoa Santa (MG). No morphological differences were observed that could distinguish between these populations. Homogeneity tests showed that the allopatric populations display a certain heterogeneity and that the sympatric populations, with different patterns of spots, are homogeneous. The Student-Newman-Keuls test, represented by Euler-Venn diagrams, showed a disjunction between the populations from the north/northeast and the one from Gruta da Lapinha. Genetic distances between the four populations (excluding the Canindé population) were within the range of intrapopulational differences. The Gruta da Lapinha population displayed a heterozygotic deficiency that could be a consequence of high levels of inbreeding due to cryptic habits of living in a small cave. These results do not favor the hypothesis of a L. longipalpis species complex in Brazil, and the species should be considered high polymorphic.
Resumo:
Analysis of restriction fragment length polymorphism (RFLP) profiles derived from digestion of polymerase chain reaction (PCR) products of the ribosomal 18S from Trypanosoma cruzi yields a typical `riboprint' profile that can vary intraspecifically. A selection of 21 stocks of T. cruzi and three outgroup taxa: T. rangeli, T. conorhini and Leishmania braziliensis were analysed by riboprinting to assess divergence within and between taxa. T. rangeli, T. conorhini and L. braziliensis could be easily differentiated from each other and from T. cruzi. Phenetic analysis of PCR-RFLP profiles indicated that, with one or two exceptions, stocks of T. cruzi could be broadly partitioned into two groups that formally corresponded to T. cruzi I and T. cruzi II respectively. To test if ribosomal 18S sequences were homogeneous within each taxon, gradient gel electrophoresis methods were employed utilising either chemical or temperature gradients. Upon interpretation of the melting profiles of riboprints and a section of the 18S independently amplified by PCR, there would appear to be at least two divergent 18S types present within T. cruzi. Heterogeneity within copies of the ribosomal 18S within a single genome has therefore been demonstrated and interestingly, this dimorphic arrangement was also present in the outgroup taxa. Presumably the ancestral duplicative event that led to the divergent 18S types preceded that of speciation within this group. These divergent 18S paralogues may have, or had, different functional pressures or rates of molecular evolution. Whether or not these divergent types are equally transcriptionally active throughout the life cycle, remain to be assessed.
Resumo:
The evolutionary relationships of sand flies and Leishmania are discussed in this report, which draws distinctions between co-association, co-evolution and co-speciation (or co-cladogenesis). Examples focus on Phlebotomus vectors of Le. infantum and Le. major in the Mediterranean subregion.
Resumo:
A total of 4,840 phlebotomine sand flies from 54 localities in Putumayo department (=state), in the Colombian Amazon region, were collected in Shannon traps, CDC light traps, resting places and from human baits. At least 42 Lutzomyia species were registered for the first time to the department. Psychodopygus and Nyssomyia were the subgenera with the greatest number of taxa, the most common species being L. (N.) yuilli and L. (N.) pajoti. They were sympatric in a wide zone of Putumayo, indicating that they should be treated as full species (new status). Among the anthropophilic sand flies, L. gomezi and L. yuilli were found in intradomiciliar, peridomestic, urban or forest habitats. L. richardwardi, L. claustrei, L. nocticola and L. micropyga are reported for the first time in the Colombian Amazon basin. L. pajoti, L. sipani and L. yucumensis are new records for Colombia.
Resumo:
The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effets on human progress. Recently emerged diseases causing massive pandemics (eg., HIV-1 and HCV, dengue, etc.) are becoming formidable challenges, which may have a direct impact on the fate of our species.
Resumo:
The use of untreated water for drinking and other activities have been associated with intestinal and extraintestinal infections in humans due to Aeromonas species. In the present study aeromonads were isolated from 48.7% of 1,000 water samples obtained from wells and other miscellaneous sources. Aeromonas species were detected in 45% of samples tested in spring, 34.5% in summer, 48% in autumn and 60% of samples tested in winter. Speciation of 382 strains resulted in 225 (59%) being A. hydrophila, 103 (27%) A. caviae, 42 (11%) A. sobria and 11 (3%) atypical aeromonads. Of 171 Aeromonas strains tested for their haemolytic activity, 53%, 49%, 40% and 37% were positive in this assay using human, horse, sheep and camel erythrocytes respectively. The results obtained indicate that potentially enteropathogenic Aeromonas species are commonly present in untreated drinking water obtained from wells in Libya (this may also apply to other neighbouring countries) which may pose a health problem to users of such water supplies. In addition, ceftriaxone and ciprofloxacin are suitable drugs that can be used in the treatment of Aeromonas-associated infections, particularly in the immunocompromised, resulting from contact with untreated sources of water.