951 resultados para Superoxide dismutases
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
Seaweeds are organisms known to exhibit a variety of biomolecules with pharmacological properties. The coast of Rio Grande do Norte has over 100 species of seaweeds, most of them not yet explored for their pharmacological potential. Sugars and phenolic compounds are the most studied of these being assigned a range of biological properties, such as anticoagulant , antiinflammatory, antitumor and antioxidant activities. In this work, we obtained methanolic extracts from thirteen seaweeds of the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; D. mertensis; Sargassum filipendula; Spatoglossum schröederi; Acanthophora specifera; Botryocladia occidentalis; Caulerpa cupresoides; C. racemosa; C. prolifera; C. sertularioides e Codium isthmocladum). They were evaluated as anticoagulant and antioxidant drugs, as well as antiproliferative drugs against the tumor cell line HeLa. None of the methanolic extracts showed anticoagulant activity, but when they were evaluated as antioxidant drugs all of extracts showed antioxidant activity in all tests performed (total antioxidant capacity, sequestration of superoxide and hydroxyl radicals, ferric chelation and reductase activity), especially the algae D. mentrualis, D. cilliolata and C. prolifera, who had the greatest potential to donate electrons.In addition, the ability of iron ions chelation appears as the main antioxidant mechanism of the methanolic extracts of these seaweeds mainly for the extract of the C. racemosa seaweed, which reached almost 100% activity. In the MTT assay, all extracts showed inhibitory activity at different levels againts HeLa cells. Moreover, D. cilliolata (MEDC) and D. menstrualis (MEDM) extracts showed specific activity to this cell line, not inhibiting the viability of 3T3 normal cell line, so they were chosen for detailing the antiproliferative mechanism of action. Using flow cytometry, fluorescence microscopy and in vitro assays we demonstrated that MEDC and MEDM induced apoptosis in HeLa cells by activation of caspases 3 and 9 and yet, MEDC induces cell cycle arrest in S phase. Together, these results showed that the methanolic extracts of brown seaweed D. menstrualis and D. cilliolata may contain agents with potential use in combatting cells from human uterine adenocarcinoma. This study also points to the need for more in-depth research on phytochemical and biological context to enable the purification of biologically active products of these extracts
Resumo:
The antioxidant activity of aqueous extracts of five edible tropical fruits (Spondias lutea, Hancornia speciosa, Spondias purpurea, Manilkara zapota and Averrhoa carambola) was investigated using different methods. The amount of phenolic compounds was determined by the Folin-Ciocalteu reagent. The M. zapota had Total Antioxidant Capacity (TAC) higher than the other fruits. Extracts showed neither reducing power nor iron chelation (between 0.01 and 2.0 mg/mL). H. speciosa exhibited the highest superoxide scavenging activity (80%, 0.5 mg/mL). However, at high concentrations (8.0 mg/mL) only A. carambola, S. purpurea and S. lutea scavenging 100% of radicals formed. M. zapota and S. purpurea had higher phenolic compound levels and greater OH radical scavenging activity (92 %, 2.0 mg/mL). Antiproliferative activity was assessed with 3T3 fibroblasts and cervical tumor cells (HeLa). The most potent extract was S. purpurea (0.5 mg/mL), which inhibited HeLa cell proliferation by 52%. The most fruits showed antioxidant and antiproliferative properties, characterizing them as functional foods.
Resumo:
In the present study, six families of sulfated polysaccharides were obtained from seaweed Dictyopteris delicatula (Lamouroux, 1809) and their anticoagulant, antioxidant and antitumor activities were evaluated. All fractions showed anticoagulant activity on aPTT assay, but not on PT assay. Fractions also exhibited total antioxidant activity, superoxide radical scavenging capacity and ferric chelating property. Thus, six fractions (F0.5v, F0.7v, F1.0v, F1.3v, F1.5v e F2.0v) we obtained by proteolytic digestion, followed by acetone fractionation and molecular sieving on Sephadex G-100. Chemical analyses demonstrated that all polysaccharides contain heterofucans composed mainly of fucose, xylose, glucose, galactose, uronic acid, and sulfate. Any fractions changed the PT. However, all fractions were able on double the aPPT on a dose-dependent manner. The heterofucans F0.7v and F1.0v showed low anticoagulant activity while F1.5v presented the most prominent anticoagulant activity .When compared to Clexane®, a low molecular weight heparin, at same concentration F1.5v presented similar anticoagulant activity. The fucans F0.5v and F0.7v at 1.0 mg/mL showed high ferric chelating activity (~45%), whereas fucans F1.3v (0.5 mg/mL) showed considerable reducing power, about 53.2% of the activity of vitamin C. The fucan F1.5v presented the most prominent anticoagulant activity. The best antiproliferative activity was found with fucans F1.3v and F0.7v. However, F1.3v activity was much higher than F0.7v inhibiting almost 100% of HeLa cell proliferation. These fucans have been selected for further studies on structural characterization as well as in vivo experiments, which are already in progress
Resumo:
OBJECTIVE: The aim of this work was to analyse some oxidative stress parameters in patients of Systemic Lúpus Erythematosus. PATIENTS AND METHODS: Determinations of reduced glutathione content in whole blood were carried out. The activity of superoxide dismutase, gluthatione peroxidase and catalase in erythrocytes and the concentration of reactive substances of acid thiobarbituric in plasma of patients female (n =19) with SLE no activity of disease (Mex-SLEDAI < 2), with average ages of 32 ± 11 years, through the spectrophotometrical methods and from healthy individuals (n =30). Statistical data were analyzed by student t-test, p<0,05. RESULTS: Our data indicated a significant decrease on the activity of catalase and significant increase on the concentration of reactive substances of acid thiobarbituric in patients with SLE comparing with healthy individuals. There was no significant difference in other parameters. CONCLUSION: The results showed that oxidative stress has a role in the pathogenesis of the disease in SLE, even in patients without active disease.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers
Resumo:
Post-menopause is a period of women s life cycle that is characterized by estrogen depletion and therefore increasing cardiovascular diseases, neurodegenerative disorders, urogenital atrophy, osteoporosis, hot flushes and sexual discomfort incidences. Estrogen is a hormone with comfirmed antioxidant action and its depletion is related to oxidative stress instalation and damaging various important biomolecules. Regular physical activity has been identified as a factor involved in reducing women s post-menopausal complications in addition to improving antioxidant defense by reducing the oxidative damage and consequently improving life s quality in this part of the population. This study aims to evaluate the influence of hypoestrogenism in antioxidant adaptation due to regular exercise, by determining reduced glutathione (GSH) and Thiobarbituric Acid Reactive Substances (SRAT) concentrations and antioxidant enzymes glutathione peroxidase (GPx), Superoxide Dismutase (SOD) and Catalase (CAT) activities in blood, brain and liver of rats. To achieve this goal we used 50 Wistar rats, weighing 180-250g which were divided into two groups, control - GC (25) and ooforectomized - GO (25). Each group was subdivided into five subgroups: Not-trained - S (5), Not-trained Acute Exercise - SEA (5), regular exercise 30 days - E30 (5), regular exercise 60 days - E60 (5) and regular exercise 90 days - E90 (5). Each of the three subgroups exercised regularly was subjected to acute exercise on the eve and the day of sacrifice to collect biological samples of blood, liver and brain and subsequent determination of SRAT concentration, GSH content and antioxidant enzymes GPx, SOD and CAT activities. The results indicated that the sedentary animals acutely exercised presented oxidative stress and regular physical activity led to antioxidant adaptation. In ooforectomized group the antioxidant adaptation seen in control animals showed to be impaired. Unlike the results from blood and liver, in brain there was a shield against oxidative damage originated by the exercise and that hypoestrogenism led to a loss of this natural antioxidant potential. Therefore, hypoestrogenism interferes negatively in antioxidant adaptation due to regular exercise
Resumo:
Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications
Resumo:
Spondias mombin is a fruitful species dispersed in tropical regions of America, Africa and Asia. In Brazil, the species can be found mainly in the northern and northeastern regions. Scarce chemical and pharmacological studies have been reported for S. mombin and until this moment studies about chemical markers were not developed. In this context, the aims of this study were to characterize the chemical markers from S. mombin leaves and evaluate their anti-inflammatory, antioxidant and antiproliferative potentials. The chemical profile of the hydroethanolic extract from S. mombin leaves analyzed by HPLC-DAD, through a validated method, allowed the identification and quantification of ellagic acid and chlorogenic acid. This extract showed anti-inflammatory potential in acute peritonitis model induced by carrageenan. The hydroethanolic extract from S. mombin leaves was subjected to a liquid-liquid partition with the solvents: n-hexane, dichloromethane, ethyl acetate and n-butanol. Regarding the anti-inflammatory potential of the fractions obtained they were active; however, ethyl acetate fraction at 200 mg/kg showed highlighted results. The compounds ellagic acid and chlorogenic acid also inhibited the leukocyte migration to the site of inflammation at 2.5, 5 and 10 mg/kg. The hydroethanolic extract, fractions and the chemical markers showed significant antioxidant potential when evaluated in different assays: DPPH Free-Radical Scavenging, Superoxide Radical Scavenging, Hydroxyl Radicals Scavenging and Reducing Power. Taken together our results showed that hydroethanolic extract of S. mombin leaves has ellagic acid and chlorogenic acid as bioactive markers and it demonstrated antiinflammatory and antioxidant properties besides no cytotoxicity against 3T3 cells. It enables us to suggest S. mombin as an important species to develop herbal drugs
Resumo:
Alpha-lipoic acid (ALA) is a potent antioxidant with favourable anti-inflammatory, metabolic and endothelial effects, and has been widely investigated due to its potential against cardiovascular risk factors. This study aimed to evaluate the effect of oral ALA supplementation on oxidative stress biomarkers, inflammation and cardiovascular risk factors in patients with hypertension. This is a double-blind placebo-controlled randomized clinical trial, where the intervention was evaluated prospectively comparing results in both groups. The sample consisted of 64 hypertensive patients who were randomly distributed into ALA group (n = 32), receiving 600 mg / day ALA for twelve weeks and control group (n = 32), receiving placebo for the same period. The following parameters were evaluated before and after intervention: lipid peroxidation, content of reduced glutathione (GSH), enzymatic activities of glutathione peroxidase (GPx) and superoxide dismustase, ultrasensitive C-reactive protein (hs-CRP), triglycerides, total cholesterol and fractions, fasting glucose and anthropometric indicators. There was a statistically significant reduction (p <0.05) in serum concentrations of total cholesterol, very low density lipoprotein (VLDL), high density lipoprotein (HDL), triglycerides and blood glucose. There was a reduction in body weight and waist, abdominal and hip circumferences in the group that received ALA. In addition, there was a statistically significant increase (p <0.05) in the contents of reduced glutathione (GSH) and glutathione peroxidase (GPx) in the group receiving ALA. Oral administration of ALA appears to be a valuable adjuvant therapy, which may contribute to decrease the damage caused by oxidative stress and other risk factors associated with the atherosclerotic process
Resumo:
Dietary modifications may significantly reduce cardiovascular disease (CVD) risk factors, including cholesterol and atherosclerosis. The present study addressed the effects of the crude extract from the pulp fruit of Tamarindus indica L. on lipid serum levels and early atherosclerotic lesions in hypercholesterolemic hamsters in vivo, and the extract's antioxidant action, in vitro. Animals were fed on either chow or atherogenic diet during 10 weeks and concomitantly received either water or T indica L. extract for drinking. Treatment of hypercholesterolemic hamsters with the T. indica pulp fruit extract (5%) led to a decrease in the levels of serum total cholesterol (50%), non-HDL cholesterol (73%) and triglyceride (60%), and to an increase of high-density lipoprotein (HDL) cholesterol levels (61%). In vitro, the extract presented radical scavenging ability, as assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals assays, and led to decreased lipid peroxidation in serum, as assessed by the thiobarbituric acid reactive substances (TBARS) assay. In vivo, the extract improved the efficiency of the antioxidant defense system, as assessed by the superoxide dismutase, catalase and glutathione peroxidase activities. Together these results indicate the potential of tamarind extracts in diminishing the risk of atherosclerosis development in humans. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Plantas de aguapé foram cultivadas em solução nutritiva de Hoagland & Arnon n.2, cujo aumento dos níveis de N, P e Cu estabeleceu as diferenças entre os tratamentos. Utilizou-se o delineamento experimental inteiramente casualizado, com quatro repetições. As variáveis fisiológicas avaliadas foram área foliar, peso de matéria seca e taxa de crescimento absoluto, taxa de crescimento relativo, taxa assimilatória líquida, razão de área foliar, peso específico de folha, área foliar específica. Foram determinados também os teores de açúcares totais e redutores e de aminoácidos totais e a atividade das enzimas glutationa S-transferase e superóxido dismutase. Os extratos enzimáticos foram obtidos da matéria fresca da parte aérea das plantas. Após a coleta, foram determinados os pesos de material seco de raízes, pecíolos e folhas, que foram utilizados para a determinação de açúcares solúveis totais e redutores e de aminoácidos. O excesso de nitrogênio causou aumento de açúcares nas folhas e de aminoácidos nas raízes. Já o tratamento com excesso de fósforo levou ao aumento de açúcares nas raízes. Os resultados apresentados sugerem que, entre os nutrientes em excesso avaliados, o cobre (0,12 mg L-1) foi o maior indutor da atividade da GST e SOD, sugerindo que este elemento induziu estresse nas plantas de aguapé.