872 resultados para Sulfonic groups
Resumo:
Self-immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArN=C](2)(C10H6)NiBr2 [Ar = 4-allyl-2,6-(i-Pr)(2)C6H2] (1), [ArN=C(Me)[Ar'N=C(Me)]C5H3NFeCl2 [Ar = Ar' = 4-allyl-2,6-(i-Pr)(2)C6H3, Ar = 2,6-(i-Pr)(2)C6H3, and Ar' = 4-allyl-2,6-(i-Pr)(2)C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArN=C](2)C10H6,NiBr2 (Ar = 2,6-(i-Pr)(2)C6H2)], but also greatly improved the morphology of polymer particles to afford micron-granula polyolefin. The self-immobilization of catalysts, the formation mechanism of microspherical. polymer, and the influence on the size of the particles are discussed. The molecular structure of self-immobilized nickel catalyst 1 was also characterized by crystallographic analysis.
Resumo:
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.
Resumo:
Two novel organic-inorganic hybrid compounds, (H(2)enMe)(4)(H3O)[Ni(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (1) and (H(2)enMe)(4)(H3O)[Cu(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (2) (enMe = 1,2-diaminopropane), have been hydrothermally synthesized and characterized by elemental analyses, IR, EPR, XPS, UV-Vis spectra and TG analyses. Single crystal X-ray diffraction shows that 1 and 2 are isostructural compounds. Both the compounds exhibit an unusual two-dimensional (2-D) window-like network consisting of one-dimensional (1-D) chains of sodium molybdenum phosphate anions connected by transition metal coordination complexes cations. Compound 1 and 2 represent the first 2-D molybdenum phosphate skeleton pillared by transition metal complex fragments.
Resumo:
[Ni(Ph)(PPh3)(N,O)] complexes containing phenyliminophenolato ligands (N,O) (1: N,O = A; 2: N,O = B; 3: N,O = Q 4: N,O = D; 5: N,O = E) have been synthesized and characterized. The molecular structure of 4 was determined by single-crystal X-ray analysis. Complexes 2-5 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization without the use of co-catalysts. The high ethylene polymerization activities of ca. 10(5) g.PE mol(-1) Ni.h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene could be accomplished by changing the ligand structures and reaction conditions. The self-immobilization of catalysts brings about a dramatic increase in the catalytic activities of ethylene polymerization.
Resumo:
The divergent synthesis of a new carbosilane liquid-crystalline (LC) dendrimer of the first generation (D1) is described. Twelve 4-butoxyazobenzene groups are used as mesogenic fragments and attached in the periphery of the molecule. Structure and properties of D1 were characterized by element analysis, H-1 NMR, MALDI-TOF-MS, IR, UV-Vis, polarizing optical micrograph, DSC and WAXD. It is argued that mesophase of nematic type is realized. It is shown that the mesophase type of the dendrimer essentially depends on the chemical nature of the mesogenic groups. Phase behavior of D1 is K82N1331132N67K. The melting point of D1 is 30similar to43 degreesC lower than that of M5, its clearing temperature is 9 similar to 11 degreesC higher than that of M5 and its mesophase region is enlarged by 39 similar to 54 degreesC compared to that of M5. Eight extinguished brushes emanating from a stationary point are observed, corresponding to the high-strength disclination of S = + 2 of dendrimer. The clearing enthalpy of D1 is smaller than the value that is commonly found for phase transition n-i in LC and LC polymers. This may be due to the presence of branched dendrimer cores which cannot be easily deformed to fit into the anisotropic LC phase structure.
Resumo:
A novel side-chain, liquid-crystalline ionomer (SLCI) with a poly(methyl hydrosiloxane) main chain and side chains containing sulfonic acid groups was used in blends of polyamide-1010 (PA1010) and polypropylene (PP) as a compatibilizer. The morphological structure, thermal behavior, and liquid-crystalline properties of the blends were investigated by Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The morphological structure of the interface of the blends containing SLCI was improved with respect to the blend without SLCI. The compatibilization effect of greater than 8 wt % SLCI for the two phases, PA1010 and PP, was better than the effects of other SLCI contents in the blends.
Resumo:
Crystallographic equivalence of ether and ketone in all para-substituted PAEKs crystallized in form I was discussed in this paper. In a word, crystallographic equivalence between ether and ketone groups is tenable when polymer contains only phenyl rings in the repeat unit. If a polymer contains a diphenyl group in the repeat unit, two cases should be distinguished. In the case of PEDEKK and PEEKDK, crystallographic equivalence between ether and ketone linkages is untenable, However, in the case of PEDK and PEDEKDK, crystallographic equivalence between ether and ketone linkages is still tenable.
Resumo:
Gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane in four cardo poly(aryl ether ketone)s containing different alkyl substituents on the phenyl ring has been examined from 30 to 100 degrees C. The permeability, diffusivity, solubility, and their temperature dependency were studied by correlations with gas shape, size, and critical temperature as well as polymeric structural factors including glass transition, secondary transition, cohesive energy density, and free volume. The bulky, stiff cardo and alkyl groups in tetramethyl-substituted TMPEK-C resulted in increased H-2 permeability (by 55%) and H-2/N-2 permselectivity (by 106%) relative to bisphenol A polysulfone (PSF). Moreover, the weak dependence of gas transport on temperature in TMPEK-C made it maintain high permselectivities (alpha(H2/N2) in 68.3 and alpha(O2/N2) in 5.71) up to 100 degrees C, exhibiting potential for high-temperature gas separation applications.
Resumo:
A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The variations of emission intensities of SrB4O7:Eu2+ and Sr2B5O9Cl:Eu2+ prepared in different atmospheres are discussed in view of the structure of host compounds. A model of substitution defects is proposed to explain the abnormal reduction of Eu3+ --> Eu2+ in non-reducing atmospheres of N-2, air and O-2. Experiment results show that SrB4O7:Eu2+ phosphor sample prepared in N-2 atmosphere has an emission intensity of 94% as high as that of the sample prepared in H-2 gas. This implies that the reduction of Eu2+ --> Eu2+ in non-reducing atmospheres could be potentially used in preparing phosphors, such as SrB4O7:Eu2+. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
An organic-inorganic hybrid solid, (Cu(2,2'-bpy)(2))(2)Mo8O26, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Dark green crystals crystallize in the orthorhombic system, space group Pna21, a = 24.164(5), b = 18.281(4), c = 11.877(2) Angstrom, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, V= 5247(2) Angstrom (3), Z = 4, lambda (MoK alpha) = 0.71073 Angstrom (R(F) = 0.0331 for 5353 reflections). Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.69 degrees < theta < 25.04 degrees using the omega -scan technique. The structure was solved by the direct method and refined by full-matrix least squares on F-2 using SHELXL-93. The structure of this compound consists of discrete (Cu(2,2'-bpy)(2))(2)Mo8O26 clusters, constructed from beta -octamolybdate subunits ((Mo8O26)(4-)) covalently bonded to two (Cu(2,2'-bpy)(2))(2+) coordination complexes via bridging oxo groups that connect two adjacent molybdenum sites. (C) 2001 Academic Press.