911 resultados para Stylistics of expression


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spinal muscular atrophy is caused by defects in the survival motor neuron (SMN) gene. To better understand the patterns of expression of SMN in neuronal cells and tissues, we raised a polyclonal antibody (abSMN) against a synthetic oligopeptide from SMN exon 2. AbSMN immunostaining in neuroblastoma cells and mouse and human central nervous system (CNS) showed intense labeling of nuclear “gems,” along with prominent nucleolar immunoreactivity in mouse and human CNS tissues. Strong cytoplasmic labeling was observed in the perikarya and proximal dendrites of human spinal motor neurons but not in their axons. Immunoblot analysis revealed a 34-kDa species in the insoluble protein fractions from human SY5Y neuroblastoma cells, embryonic mouse spinal cord cultures, and human CNS tissue. By contrast, a 38-kDa species was detected in the cytosolic fraction of SY5Y cells. We conclude that SMN protein is expressed prominently in both the cytoplasm and nucleus in multiple types of neurons in brain and spinal cord, a finding consistent with a role for SMN as a determinant of neuronal viability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In urodele amphibians, lens induction during development and regeneration occurs through different pathways. During development, the lens is induced from the mutual interaction of the ectoderm and the optic vesicle, whereas after lentectomy the lens is regenerated through the transdifferentiation of the iris-pigmented epithelial cells. Given the known role of fibroblast growth factors (FGFs) during lens development, we examined whether or not the expression and the effects of exogenous FGF during urodele lens regeneration were conserved. In this paper, we describe expression of FGF-1 and its receptors, FGFR-2 (KGFR and bek variants) and FGFR-3, in newts during lens regeneration. Expression of these genes was readily observed in the dedifferentiating pigmented epithelial cells, and the levels of expression were high in the lens epithelium and the differentiating fibers and lower in the retina. These patterns of expression implied involvement of FGFs in lens regeneration. To further elucidate this function, we examined the effects of exogenous FGF-1 and FGF-4 during lens regeneration. FGF-1 or FGF-4 treatment in lentectomized eyes resulted in the induction of abnormalities reminiscent to the ones induced during lens development in transgenic mice. Effects included transformation of epithelial cells to fiber cells, double lens regeneration, and lenses with abnormal polarity. These results establish that FGF molecules are key factors in fiber differentiation, polarity, and morphogenesis of the lens during regeneration even though the regenerating lens is induced by a different mechanism than in lens development. In this sense, FGF function in lens regeneration and development should be regarded as conserved. Such conservation should help elucidate the mechanisms of lens regeneration in urodeles and its absence in higher vertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recombinant adeno-associated virus (rAAV) vector capable of infecting cells and expressing rat glial cell line-derived neurotrophic factor (rGDNF), a putative central nervous system dopaminergic survival factor, under the control of a potent cytomegalovirus (CMV) immediate/early promoter (AAV-MD-rGDNF) was constructed. Two experiments were performed to evaluate the time course of expression of rAAV-mediated GDNF protein expression and to test the vector in an animal model of Parkinson’s disease. To evaluate the ability of rAAV-rGDNF to protect nigral dopaminergic neurons in the progressive Sauer and Oertel 6-hydroxydopamine (6-OHDA) lesion model, rats received perinigral injections of either rAAV-rGDNF virus or rAAV-lacZ control virus 3 weeks prior to a striatal 6-OHDA lesion and were sacrificed 4 weeks after 6-OHDA. Cell counts of back-labeled fluorogold-positive neurons in the substantia nigra revealed that rAAV-MD-rGDNF protected a significant number of cells when compared with cell counts of rAAV-CMV-lacZ-injected rats (94% vs. 51%, respectively). In close agreement, 85% of tyrosine hydroxylase-positive cells remained in the nigral rAAV-MD-rGDNF group vs. only 49% in the lacZ group. A separate group of rats were given identical perinigral virus injections and were sacrificed at 3 and 10 weeks after surgery. Nigral GDNF protein expression remained relatively stable over the 10 weeks investigated. These data indicate that the use of rAAV, a noncytopathic viral vector, can promote delivery of functional levels of GDNF in a degenerative model of Parkinson’s disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To better understand the structure and function of Z lines, we used sarcomeric isoforms of α-actinin and γ-filamin to screen a human skeletal muscle cDNA library for interacting proteins by using the yeast two-hybrid system. Here we describe myozenin (MYOZ), an α-actinin- and γ-filamin-binding Z line protein expressed predominantly in skeletal muscle. Myozenin is predicted to be a 32-kDa, globular protein with a central glycine-rich domain flanked by α-helical regions with no strong homologies to any known genes. The MYOZ gene has six exons and maps to human chromosome 10q22.1-q22.2. Northern blot analysis demonstrated that this transcript is expressed primarily in skeletal muscle with significantly lower levels of expression in several other tissues. Antimyozenin antisera stain skeletal muscle in a sarcomeric pattern indistinguishable from that seen by using antibodies for α-actinin, and immunogold electron microscopy confirms localization specifically to Z lines. Thus, myozenin is a skeletal muscle Z line protein that may be a good candidate gene for limb-girdle muscular dystrophy or other neuromuscular disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypoxia is important in both biomedical and environmental contexts and necessitates rapid adaptive changes in metabolic organization. Mammals, as air breathers, have a limited capacity to withstand sustained exposure to hypoxia. By contrast, some aquatic animals, such as certain fishes, are routinely exposed and resistant to severe environmental hypoxia. Understanding the changes in gene expression in fishes exposed to hypoxic stress could reveal novel mechanisms of tolerance that may shed new light on hypoxia and ischemia in higher vertebrates. Using cDNA microarrays, we have studied gene expression in a hypoxia-tolerant burrow-dwelling goby fish, Gillichthys mirabilis. We show that a coherent picture of a complex transcriptional response can be generated for a nonmodel organism for which sequence data were unavailable. We demonstrate that: (i) although certain shifts in gene expression mirror changes in mammals, novel genes are differentially expressed in fish; and (ii) tissue-specific patterns of expression reflect the different metabolic roles of tissues during hypoxia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription factors belonging to the CCAAT-enhancer binding protein (C/EBP) family have been implicated in the regulation of gene expression during differentiation, development and disease. Autoregulation is relatively common in the modulation of C/EBP gene expression and the murine and human C/EBPα genes have been shown to be auto-activated by different mechanisms. In the light of this finding, it is essential that autoregulation of C/EBPα genes from a wider range of different species be investigated in order to gauge the degree of commonality, or otherwise, that may exist. We report here studies that investigate the regulation of the Xenopus laevis C/EBPα gene (xC/EBPα). The –1131/+41 promoter region was capable of directing high levels of expression in both the human hepatoma Hep3B and the Xenopus kidney epithelial A6 cell lines, and was auto-activated by expression vectors specifying for xC/EBPα or xC/EBPβ. Deletion analysis showed that the –321/+41 sequence was sufficient for both the constitutive promoter activity and auto-activation and electrophoretic mobility shift assays identified the interaction of C/EBPs and Sp1 to this region. Although deletion of either the C/EBP or the Sp1 site drastically reduced the xC/EBPα promoter activity, multimers of only the C/EBP site could confer autoregulation to a heterologous SV40 promoter. These results indicate that, in contrast to the human promoter and in common with the murine gene, the xC/EBPα promoter was subject to direct autoregulation. In addition, we demonstrate a novel species-specific action of Sp1 in the regulation of C/EBPα expression, with the factor able to repress the murine promoter but activate the Xenopus gene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. By combining the different types of expression data, GXD aims to provide increasingly complete information about the expression profiles of genes in different mouse strains and mutants, thus enabling valuable insights into the molecular networks that underlie normal development and disease. GXD is integrated with the Mouse Genome Database (MGD). Extensive interconnections with sequence databases and with databases from other species, and the development and use of shared controlled vocabularies extend GXD’s utility for the analysis of gene expression information. GXD is accessible through the Mouse Genome Informatics web site at http://www.informatic s.jax.org/ or directly at http://www.informatics.jax.org/me nus/expression_menu.shtml.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chloroplast gene rbcL encodes the large subunit of the CO2-fixing enzyme ribulose-bisphosphate carboxylase. In previous work a target for photo-accelerated degradation of Chlamydomonas reinhardtii rbcL transcripts in vivo was found to lie within the first 63 nucleotides, and a sequence element required for increasing the longevity of transcripts of rbcL-reporter genes was found to occur between nucleotides 170 and 350. Photo-accelerated degradation of rbcL transcripts has been found to require nucleotides 21 to 41. Transcript nucleotides lying between 329 and 334 and between 14 and 27 are essential for stabilizing transcripts in vivo; mutations in either region reduce the longevity of transcripts. It is postulated that the effectiveness of photo-accelerated endonuclease attacks on the nucleotide 21 to 41 region is reduced by physical blockage or distortion of the target sequence by interacting proteins that associate with nucleotides in the 14 to 27 and 329 to 334 regions of the transcripts. Both the nucleotide +329 to +334 stabilizing sequence of rbcL and a transcription enhancing sequence that lies between +126 and +170 encode well conserved (cyanobacteria through angiosperms) amino acid sequences; the evolution of expression control elements within the protein coding sequence of rbcL is considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The DAN/TIR mannoprotein genes of Saccharomyces cerevisiae (DAN1, DAN2, DAN3, DAN4, TIR1, TIR2, TIR3 and TIR4) are expressed in anaerobic cells while the predominant cell wall proteins Cwp1 and Cwp2 are down-regulated. Elements involved in activation and repression of the DAN/TIR genes were defined in this study, using the DAN1 promoter as a model. Nested deletions in a DAN1/lacZ reporter pinpointed regions carrying activation and repression elements. Inspection revealed two consensus sequences subsequently shown to be independent anaerobic response elements (AR1, consensus TCGTTYAG; AR2, consensus AAAAATTGTTGA). AR1 is found in all of the DAN/TIR promoters; AR2 is found in DAN1, DAN2 and DAN3. A 120 bp segment carrying two copies of AR1 preferentially activated transcription of lacZ under anaerobic conditions. A fusion of three synthetic copies of AR1 to MEL1 was also expressed anaerobically. Mutations in either AR1 site within the 120 bp segment caused a drastic loss of expression, indicating that both are necessary for activation and implying cooperativity between adjacent transcriptional activation complexes. A single AR2 site carried on a 46 bp fragment from the DAN1 promoter activated lacZ transcription under anaerobic conditions, as did a 26 bp synthetic AR2 fragment fused to MEL1. Nucleotide substitutions within the AR2 sequence eliminated the activity of the 46 bp segment. Ablation of the AR2 sequences in the full promoter caused a partial reduction of expression. The presence of the ATTGTT core (recognized by HMG proteins) in the AR2 sequence suggests that an HMG protein may activate through AR2. One region was implicated in aerobic repression of DAN1. It contains sites for the heme-induced Mot3 and Rox1 repressors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H+-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H+-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Doxycycline (Dox)-sensitive co-regulation of two transcriptionally coupled transgenes was investigated in the mouse. For this, we generated four independent mouse lines carrying coding regions for green fluorescent protein (GFP) and β-galactosidase in a bicistronic, bidirectional module. In all four lines the expression module was silent but was activated when transcription factor tTA was provided by the α-CaMKII-tTA transgene. In vivo analysis of GFP fluorescence, β-galactosidase and immunochemical stainings revealed differences in GFP and β-galactosidase levels between the lines, but comparable patterns of expression. Strong signals were found in neurons of the olfactory system, neocortical, limbic lobe and basal ganglia structures. Weaker expression was limited to thalamic, pontine and medullary structures, the spinal cord, the eye and to some Purkinje cells in the cerebellum. Strong GFP signals were always accompanied by intense β-galactosidase activity, both of which could be co-regulated by Dox. We conclude that the tTA-sensitive bidirectional expression module is well suited to express genes of interest in a regulated manner and that GFP can be used to track transcriptional activity of the module in the living mouse.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

D-raf, a Drosophila homolog of the raf proto-oncogene, has diverse functions throughout development and is transcribed in a wide range of tissues, with high levels of expression in the ovary and in association with rapid proliferation. The expression pattern resembles those of S phase genes, which are regulated by E2F transcription factors. In the 5′-flanking region of D-raf, four sequences (E2F sites 1–4) similar to the E2F recognition sequence were found, one of them (E2F site 3) being recognized efficiently by Drosophila E2F (dE2F) in vitro. Transient luciferase expression assays confirmed activation of the D-raf gene promoter by dE2F/dDP. Expression of Draf–lacZ was greatly reduced in embryos homozygous for the dE2F mutation. These results suggest that dE2F is likely to be an important regulator of D-raf transcription.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two cDNAs clones (Cel1 and Cel2) encoding divergent endo-β-1,4-glucanases (EGases) have been isolated from a cDNA library obtained from ripe strawberry (Fragaria x ananassa Duch) fruit. The analysis of the amino acid sequence suggests that Cel1 and Cel2 EGases have different secondary and tertiary structures and that they differ in the presence of potential N-glycosylation sites. By in vitro translation we show that Cel1 and Cel2 bear a functional signal peptide, the cleavage of which yields mature proteins of 52 and 60 kD, respectively. Phylogenetic analysis revealed that the Cel2 EGase diverged early in evolution from other plant EGases. Northern analysis showed that both EGases are highly expressed in fruit and that they have different temporal patterns of accumulation. The Cel2 EGase was expressed in green fruit, accumulating as the fruit turned from green to white and remaining at an elevated, constant level throughout fruit ripening. In contrast, the Cel1 transcript was not detected in green fruit and only a low level of expression was observed in white fruit. The level of Cel1 mRNA increased gradually during ripening, reaching a maximum in fully ripe fruit. The high levels of Cel1 and Cel2 mRNA in ripe fruit and their overlapping patterns of expression suggest that these EGases play an important role in softening during ripening. In addition, the early expression of Cel2 in green fruit, well before significant softening begins, suggests that the product of this gene may also be involved in processes other than fruit softening, e.g. cell wall expansion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Nicotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of expression of mRNA for the aleurone RNase revealed that, like the pattern for α-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase α-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.