979 resultados para Steel-concrete bonding
Resumo:
A new, state-of-the-art mobile lab has recently been launched from the PCC Center at Iowa State University to bring high-tech concrete materials and concrete pavement testing capabilities to the field. The Mobile Concrete Research Lab has been custom built and fully outfitted with equipment capable of performing a comprehensive suite of tests.
Resumo:
The concrete paving industry has spent large amounts of time working to provide safe, quiet, and smooth pavements for the traveling public as their needs and driving habits have changed since the advent of the automobile. During that time, the efforts of research, design, and construction were directed at one of the problems at a time. Current public surveys indicate that the traveling public wishes to have safe, quiet, and smooth pavements. This report identifies the problems remaining in the areas of developing smooth, quiet, and safe portland cement concrete pavement in each pavement we build. It develops the research framework that can be used to bring the existing information together with additional research in each area. The resulting answers can be used in each pavement design for a quiet, safe, and smooth pavement that is also long lasting.
Resumo:
The report reviews the past work in the United States and internationally in the development of two-lift pavements. It points out the strengths and limitations in the construction of such portland cement concrete pavements. Certain cost, mix design, and construction problems are inhibiting the growth of this product. Changes in the availability of aggregates, knowledge of materials and new construction equipment, and the desire for specific surfaces to meet noise, durability, and safety are prompting the need to reconsider this type of construction.
Resumo:
State Highway Departments and local street and road agencies are currently faced with aging highway systems and a need to extend the life of some of the pavements. The agency engineer should have the opportunity to explore the use of multiple surface types in the selection of a preferred rehabilitation strategy. This study was designed to look at the portland cement concrete overlay alternative and especially the design of overlays for existing composite (portland cement and asphaltic cement concrete) pavements. Existing design procedures for portland cement concrete overlays deal primarily with an existing asphaltic concrete pavement with an underlying granular base or stabilized base. This study reviewed those design methods and moved to the development of a design for overlays of composite pavements. It deals directly with existing portland cement concrete pavements that have been overlaid with successive asphaltic concrete overlays and are in need of another overlay due to poor performance of the existing surface. The results of this study provide the engineer with a way to use existing deflection technology coupled with materials testing and a combination of existing overlay design methods to determine the design thickness of the portland cement concrete overlay. The design methodology provides guidance for the engineer, from the evaluation of the existing pavement condition through the construction of the overlay. It also provides a structural analysis of various joint and widening patterns on the performance of such designs. This work provides the engineer with a portland cement concrete overlay solution to composite pavements or conventional asphaltic concrete pavements that are in need of surface rehabilitation.
Resumo:
Deterioration in portland cement concrete (PCC) pavements can occur due to distresses caused by a combination of traffic loads and weather conditions. Hot mix asphalt (HMA) overlay is the most commonly used rehabilitation technique for such deteriorated PCC pavements. However, the performance of these HMA overlaid pavements is hindered due to the occurrence of reflective cracking, resulting in significant reduction of pavement serviceability. Various fractured slab techniques, including rubblization, crack and seat, and break and seat are used to minimize reflective cracking by reducing the slab action. However, the design of structural overlay thickness for cracked and seated and rubblized pavements is difficult as the resulting structure is neither a “true” rigid pavement nor a “true” flexible pavement. Existing design methodologies use the empirical procedures based on the AASHO Road Test conducted in 1961. But, the AASHO Road Test did not employ any fractured slab technique, and there are numerous limitations associated with extrapolating its results to HMA overlay thickness design for fractured PCC pavements. The main objective of this project is to develop a mechanistic-empirical (ME) design approach for the HMA overlay thickness design for fractured PCC pavements. In this design procedure, failure criteria such as the tensile strain at the bottom of HMA layer and the vertical compressive strain on the surface of subgrade are used to consider HMA fatigue and subgrade rutting, respectively. The developed ME design system is also implemented in a Visual Basic computer program. A partial validation of the design method with reference to an instrumented trial project (IA-141, Polk County) in Iowa is provided in this report. Tensile strain values at the bottom of the HMA layer collected from the FWD testing at this project site are in agreement with the results obtained from the developed computer program.
Resumo:
One of the most important issues in portland cement concrete pavement research today is surface characteristics. The issue is one of balancing surface texture construction with the need for durability, skid resistance, and noise reduction. The National Concrete Pavement Technology Center at Iowa State University, in conjunction with the Federal Highway Administration, American Concrete Pavement Association, International Grinding and Grooving Association, Iowa Highway Research Board, and other states, have entered into a three-part National Surface Characteristics Program to resolve the balancing problem. As a portion of Part 2, this report documents the construction of 18 separate pavement surfaces for use in the first level of testing for the national project. It identifies the testing to be done and the limitations observed in the construction process. The results of the actual tests will be included in the subsequent national study reports.
Resumo:
Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.
Resumo:
The objective of the study presented in this report was to document the launch of the Iowa River Bridge and to monitor and evaluate the structural performance of the bridge superstructure and substructure during the launch. The Iowa Department of Transportation used an incremental launching method, which is relatively unique for steel I-girder bridges, to construct the Iowa River Bridge over an environmentally sensitive river valley in central Iowa. The bridge was designed as two separate roadways consisting of four steel plate girders each that are approximately 11 ft deep and span approximately 301 ft each over five spans. The concrete bridge deck was not placed until after both roadways had been launched. One of the most significant monitoring and evaluation observations related to the superstructure was that the bottom flange (and associated web region) was subjected to extremely large stresses during the crossing of launch rollers. Regarding the substructure performance, the column stresses did not exceed reasonable design limits during the daylong launches. The scope of the study did not allow adequate quantification of the measured applied launch forces at the piers. Future proposed esearch should provide an opportunity to address this. The overall experimental performance of the bridge during the launch was compared with the predicted design performance. In general, the substructure design, girder contact stress, and total launching force assumptions correlated well with the experimental results. The design assumptions for total axial force in crossframe members, on the other hand, differed from the experimental results by as much as 300%.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.
Resumo:
Highway noise is one of the most pressing of the surface characteristics issues facing the concrete paving industry. This is particularly true in urban areas, where not only is there a higher population density near major thoroughfares, but also a greater volume of commuter traffic (Sandberg and Ejsmont 2002; van Keulen 2004). To help address this issue, the National Concrete Pavement Technology Center (CP Tech Center) at Iowa State University (ISU), Federal Highway Administration (FHWA), American Concrete Pavement Association (ACPA), and other organizations have partnered to conduct a multi-part, seven-year Concrete Pavement Surface Characteristics Project. This document contains the results of Part 1, Task 2, of the ISU-FHWA project, addressing the noise issue by evaluating conventional and innovative concrete pavement noise reduction methods. The first objective of this task was to determine what if any concrete surface textures currently constructed in the United States or Europe were considered quiet, had long-term friction characteristics, could be consistently built, and were cost effective. Any specifications of such concrete textures would be included in this report. The second objective was to determine whether any promising new concrete pavement surfaces to control tire-pavement noise and friction were in the development stage and, if so, what further research was necessary. The final objective was to identify measurement techniques used in the evaluation.
Resumo:
Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.
Resumo:
Surface characteristics represent a critical issue facing pavement owners and the concrete paving industry. The traveling public has come to expect smoother, quieter, and better drained pavements, all without compromising safety. The overall surface characteristics issues is extremely complex since all pavement surface characteristics properties, including texture, noise, friction, splash/spray, rolling resistance, reflectivity/illuminance, and smoothness, are complexly related. The following needs and gaps related to achieving desired pavement surface characteristics need to be addressed: determined how changes in one surface characteristic affect, either beneficially or detrimentally, other characteristics of the pavement, determine the long-term surface and acoustic durability of different textures, and develop, evaluate, and standardize new data collection and analysis tools. It is clear that an overall strategic and coordinated research approach to the problem must be developed and pursued to address these needs and gaps.
Resumo:
To ensure that high-quality materials are used in concrete mixing, all materials delivered to the site should be inspected to ensure that they meet specification requirements. All materials should be delivered with the proper certifications, invoices, or bill of lading. These records should indicate when the shipment arrived, the amount and identification of material delivered, and the laboratory report certification number, invoice number, and ticket number.
Resumo:
At the heart of all concrete pavement projects is the concrete itself. This manual is intended as both a training tool and a reference to help concrete paving engineers, quality control personnel, specifiers, contractors, suppliers, technicians, and tradespeople bridge the gap between recent research and practice regarding optimizing the performance of concrete for pavements. Specifically, it will help readers do the following:
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.