946 resultados para Stabilized Zirconia
Resumo:
Iowa Highway Commission Project HR-33, "Characteristics of Chemically Treated Roadway Surfaces", was investigated at the Iowa Engineering Experiment Station under Project 375-S. The purpose of the project as originally proposed was to study the physical and chemical characteristics of chemically treated roadway surfaces. All chemical treatments were to be included, but only sodium chloride and calcium chloride treated roadways were investigated. The uses of other types of chemical treatment were not discovered until recently, notably spent sulfite liquor and a commercial additive. Costs of stabilized secondary roads in Hamilton County averaged $4300.00 per mile even though remanent soil-aggregate material was used. The cost of similar roads in Franklin County was $4400.00 per mile. The Franklin County road surfaces were constructed entirely from materials that were hauled to the road site. Costs in Butler County were a little over $3000.00 per mile some eight years ago. Chemical investigations indicate that calcium chloride and sodium chloride are lost through leaching. Approximately 95 percent of the sodium chloride appears to have been lost, and nearly 65 percent of the calcium chloride has disappeared. The latter value may be much in error since surface dressings of calcium chloride are commonly used and have not been taken into account. Clay contents of the soil-aggregate-chemical stabilized roads range from about 6 to ll percent, averaging 8 or 9 percent. The thicknesses of stabilized mats are usually 2 to 4 inches, with in-place densities ranging from 130 to 145 pcf. Generally the densities found in sodium chloride stabilized roads were slightly higher than those found in the calcium chloride stabilized roads.
Resumo:
Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.
Resumo:
Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.
Resumo:
PURPOSE: Colonoscopy is reported to be a safe procedure that is routinely performed for the diagnosis and treatment of colorectal diseases. Splenic rupture is considered to be a rare complication with high mortality and morbidity that requires immediate diagnosis and management. Nonoperative management (NOM), surgical treatment (ST), and, more recently, proximal splenic artery embolization (PSAE) have been proposed as treatment options. The goal of this study was to assess whether PSAE is safe even in high-grade ruptures. METHODS: We report two rare cases of post colonoscopy splenic rupture. A systematic review of the literature from 2002 to 2010 (first reported case of PSAE) was performed and the three types of treatment compared. RESULTS: All patients reviewed (77 of 77) presented with intraperitoneal hemorrhage due to isolated splenic trauma. Splenic rupture was high-grade in most patients when grading was possible. Six of 77 patients (7.8Â %) were treated with PSAE, including the 2 cases reported herein. Fifty-seven patients (74Â %) underwent ST. NOM was attempted first in 25 patients with a high failure rate (11 of 25 [44Â %]) and requiring a salvage procedure, such as PSAE or ST. Previous surgery (31 of 59 patients), adhesions (10 of 13), diagnostic colonoscopies (49 of 71), previous biopsies or polypectomies (31 of 57) and female sex (56 of 77) were identified as risk factors. In contrast, splenomegaly (0 of 77 patients), medications that increase the risk of bleeding (13 of 30) and difficult colonoscopies (16 of 51) were not identified as risk factors. PSAE was safe and effective even in elderly patients with comorbidities and those taking medications that increase the risk of bleeding, and the length of the hospital stay was similar to that after ST. CONCLUSION: We propose a treatment algorithm based on clinical and radiological criteria. Because of the high failure rate after NOM, PSAE should be the treatment of choice to manage grade I through IV splenic ruptures after colonoscopy in hemodynamically stabilized patients.
Resumo:
L’objectiu d’aquest estudi ha estat avaluar l’efecte que té sobre algunes propietats fisicoquímiques del sòl i el creixement de plantes, l’adició del producte compostat obtingut a partir de la fracció orgànica dels residus sòlids urbans de recollida no selectiva, material anomenat bioestabilitzat. S’ha dut a terme un bioassaig amb blat (Triticum aestivum), utilitzant bioestabilitzat procedent de dues plantes de tractament mecànic i biològic, Vacarisses i Mataró, que s’ha aplicat a diferents dosis en un sòl de baixa qualitat. S’ha observat una relació positiva entre el creixement del blat i la dosis de bioestabilitzat aplicada. Pel que fa a la germinació, ha estat lleugerament estimulada per les dosis intermèdies de bioestabilitzat assajades. En quant a les propietats fisicoquímiques del sòl, s’ha observat un increment de la salinitat en funció de la dosis de bioestabilitzat aplicada, que en les més elevades podria ser problemàtica. També, el contingut de matèria orgànica ha augmentat de manera proporcional a la dosis, cosa que ha millorat les propietats físiques del sòl. Per altra banda, s’han trobat continguts d’impropis (vidre, plàstic ...) i concentracions d’alguns metalls pesants bastant elevades, així com una considerable variabilitat entre les partides de bioestabilitzat. Finalment, es conclou que abans de permetre l’aplicació de bioestabilitzat per a la rehabilitació de sòls degradats, cal aprofundir més en l’estudi d’aquest material.
Resumo:
We conducted a 12-year retrospective study to determine the effects that the community respiratory-virus species and the localization of respiratory-tract virus infection have on severe airflow decline, a serious and fatal complication occurring after hematopoietic cell transplantation (HCT). Of 132 HCT recipients with respiratory-tract virus infection during the initial 100 days after HCT, 50 (38%) developed airflow decline < or =1 year after HCT. Lower-respiratory-tract infection with parainfluenza (odds ratio [OR], 17.9 [95% confidence interval {CI}, 2.0-160]; P=.01) and respiratory syncytial virus (OR, 3.6 [95% CI, 1.0-13]; P=.05) independently increased the risk of development of airflow decline < or =1 year after HCT. The airflow decline was immediately detectable after infection and was strongest for lower-respiratory-tract infection with parainfluenza virus; it stabilized during the months after the respiratory-tract virus infection, but, at < or =1 year after HCT, the initial lung function was not restored. Thus, community respiratory virus-associated airflow decline seems to be specific to viral species and infection localization.
Resumo:
BACKGROUND:: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. METHODS:: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. RESULTS:: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6-1.9) (median [95% CI]) to 2.3 g (2.2-2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4-15.5) to 30.0 s (21.8-31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. CONCLUSIONS:: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.
Resumo:
Despite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment. TCR sequencing also revealed that this particular clone arose at least 1 year before vaccination, displayed long-term persistence, and efficient homing to metastases. Remarkably, during concomitant vaccination over 3.5 years, the frequency of the pre-existing clone progressively increased, reaching up to 2.5% of the circulating CD8 pool while its effector functions were enhanced. In parallel, the disease stabilized, but subsequently progressed with loss of Melan-A expression by melanoma cells. Collectively, combined ex vivo analysis of T cell differentiation and clonality revealed for the first time a strong expansion of a tumor Ag-specific human T cell clone, comparable to protective virus-specific T cells. The observed successful boosting by peptide vaccination support further development of immunotherapy by including strategies to overcome immune escape.
Resumo:
The addition of a selected self-cementing, Class C fly ash to blow sand soils improves their compacted strength greatly as opposed to the minimal strength improvement when fly ash is mixed with loess soil. By varying the percentage of fly ash added, the resulting blow sand-fly ash mixture can function as a low strength stabilized material or as a higher strength sub-base. Low strength stabilized material can also be obtained by mixing loess soils with a selected Class C fly ash. The development of the higher strength values required for subbase materials is very dependent upon compaction delay time and moisture condition of the material. Results at this time indicate that, when compaction delays are involved, excess moisture in the material has the greatest positive effect in achieving minimum strengths. Other added retarding agents, such as borax and gypsum, have less effect.
Resumo:
As streets age, officials must deal with rehabilitating and reconstructing these pavements to maintain a safe and comfortable ride. In light of nationwide budget shortfalls, cost-effective methods of extending pavement service life must be developed or the overall condition of street systems will continue to fall. Thin maintenance surfaces (TMSs) are a set of cost-effective preventive maintenance surfacing techniques that can be used to extend the life of bituminous pavement—pavement built with hot mix asphalt, hot mix asphalt overlays of portland cement concrete pavements, built-up seal coat (chip seal), stabilized materials, or a combination of these. While previous phases of TMS research have provided information about the uses of thin maintenance surfaces in rural settings, urban areas have different road maintenance challenges that should be considered separately. This research provides city street officials with suggestions for TMS techniques that street departments can easily test and include into their current programs. This research project facilitated the construction of TMS test sections in Cedar Rapids, Council Bluffs, and West Des Moines (all urban settings in Iowa). Test section sites and surfaces were selected to suit the needs of municipalities and were applied to roads with an array of various distresses and maintenance needs. Condition surveys of each test section were performed before construction, after construction, and after the first winter to record the amount and severity of existing distress and calculate the pavement condition index. Because conditions of the test sections varied greatly, determining which surface was most successful by comparing case studies was not feasible. However, some general conclusions can be made from this research. TMSs are suitable preventive maintenance techniques for a municipal street department’s program for preserving existing pavements. Careful attention should be paid to proper planning, quality control during construction, aggregate and binder selection, and aggregate embedment in order to support successful TMS application.
Resumo:
Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.
Resumo:
In jointed portland cement concrete pavements, dowel bars are typically used to transfer loads between adjacent slabs. A common practice is for designers to place dowel bars at a certain, consistent spacing such that a sufficient number of dowels are available to effectively transfer anticipated loads. In many cases, however, the standards developed today for new highway construction simply do not reflect the design needs of low traffic volume, rural roads. The objective of this research was to evaluate the impact of the number of dowel bars and dowel location on joint performance and ultimately on pavement performance. For this research, test sections were designed, constructed, and tested in actual field service pavement. Test sections were developed to include areas with load transfer assemblies having three and four dowels in the outer wheel path only, areas with no joint reinforcement whatsoever, and full lane dowel basket assemblies as the control. Two adjacent paving projects provided both rural and urban settings and differing base materials. This report documents the approach to implementing the study and provides discussion and suggestions based on the results of the research. The research results indicate that the use of single three or four dowel basket assemblies in the outer wheel path is acceptable for use in low truck volume roads. In the case of roadways with relatively stiff bases such as asphalt treated or stabilized bases, the use of the three dowel bar pattern in the outside wheel path is expected to provide adequate performance over the design life of the pavement. In the case of untreated or granular bases, the results indicate that the use of the three or four dowel bar basket in both wheel paths provides the best long-term solution to load transfer and faulting measurements.
Resumo:
Road dust is caused by wind entraining fine material from the roadway surface and the main source of Iowa road dust is attrition of carbonate rock used as aggregate. The mechanisms of dust suppression can be considered as two processes: increasing particle size of the surface fines by agglomeration and inhibiting degradation of the coarse material. Agglomeration may occur by capillary tension in the pore water, surfactants that increase bonding between clay particles, and cements that bind the mineral matter together. Hygroscopic dust suppressants such as calcium chloride have short durations of effectiveness because capillary tension is the primary agglomeration mechanism. Somewhat more permanent methods of agglomeration result from chemicals that cement smaller particles into a mat or larger particles. The cements include lignosulfonates, resins, and asphalt products. The duration of the cements depend on their solubility and the climate. The only dust palliative that decreases aggregate degradation is shredded shingles that act as cushions between aggregate particles. It is likely that synthetic polymers also provide some protection against coarse aggregate attrition. Calcium chloride and lignosulfonates are widely used in Iowa. Both palliatives have a useful duration of about 6 months. Calcium chloride is effective with surface soils of moderate fine content and plasticity whereas lignin works best with materials that have high fine content and high plasticity indices. Bentonite appears to be effective for up to two years and works well with surface materials having low fines and plasticity and works well with limestone aggregate. Selection of appropriate dust suppressants should be based on characterization of the road surface material. Estimation of dosage rates for potential palliatives can be based on data from this report, from technical reports, information from reliable vendors, or laboratory screening tests. The selection should include economic analysis of construction and maintenance costs. The effectiveness of the treatment should be evaluated by any of the field performance measuring techniques discussed in this report. Novel dust control agents that need research for potential application in Iowa include; acidulated soybean oil (soapstock), soybean oil, ground up asphalt shingles, and foamed asphalt. New laboratory evaluation protocols to screen additives for potential effectiveness and determine dosage are needed. A modification of ASTM D 560 to estimate the freeze-thaw and wet-dry durability of Portland cement stabilized soils would be a starting point for improved laboratory testing of dust palliatives.
Resumo:
Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.
Resumo:
To provide insight into subgrade non-uniformity and its effects on pavement performance, this study investigated the influence of non-uniform subgrade support on pavement responses (stress and deflection) that affect pavement performance. Several reconstructed PCC pavement projects in Iowa were studied to document and evaluate the influence of subgrade/subbase non-uniformity on pavement performance. In situ field tests were performed at 12 sites to determine the subgrade/subbase engineering properties and develop a database of engineering parameter values for statistical and numerical analysis. Results of stiffness, moisture and density, strength, and soil classification were used to determine the spatial variability of a given property. Natural subgrade soils, fly ash-stabilized subgrade, reclaimed hydrated fly ash subbase, and granular subbase were studied. The influence of the spatial variability of subgrade/subbase on pavement performance was then evaluated by modeling the elastic properties of the pavement and subgrade using the ISLAB2000 finite element analysis program. A major conclusion from this study is that non-uniform subgrade/subbase stiffness increases localized deflections and causes principal stress concentrations in the pavement, which can lead to fatigue cracking and other types of pavement distresses. Field data show that hydrated fly ash, self-cementing fly ash-stabilized subgrade, and granular subbases exhibit lower variability than natural subgrade soils. Pavement life should be increased through the use of more uniform subgrade support. Subgrade/subbase construction in the future should consider uniformity as a key to long-term pavement performance.