922 resultados para Stability and Convergence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerated soil erosion is an aspect of dryland degradation that is affected by repeated intense drought events and land management activities such as commercial livestock grazing. A soil stability index (SSI) that detects the erosion status and susceptibility of a landscape at the pixel level, i.e., stable, erosional, or depositional pixels, was derived from the spectral properties of an archived time series (from 1972 to 1997) of Landsat satellite data of a commercial ranch in northeastern Utah. The SSI was retrospectively validated with contemporary field measures of soil organic matter and erosion status that was surveyed by US federal land management agencies. Catastrophe theory provided the conceptual framework for retrospective assessment of the impact of commercial grazing and soil water availability on the SSI. The overall SSI trend was from an eroding landscape in the early drier 1970s towards stable conditions in the wetter mid-1980s and late 1990s. The landscape catastrophically shifted towards an extreme eroding state that was coincident with the “The Great North American Drought of 1988”. Periods of landscape stability and trajectories toward stability were coincident with extremely wet El Niño events. Commercial grazing had less correlation with soil stability than drought conditions. However, the landscape became more susceptible to erosion events under multiple droughts and grazing. Land managers now have nearly a year warning of El Niño and La Niña events and can adjust their management decisions according to predicted landscape erosion conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagonlike peptide-1(7 36)amide (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. Rapid removal of the Nterminal dipeptide, His7-Ala8, by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) curtails the biological activity of GLP-1. Chemical modifications or substitutions of GLP-1 at His7 or Ala8 improve resistance to DPPIV action, but this often reduces potency. Little attention has focused on the metabolic stability and functional activity of GLP-1 analogues with amino acid substitution at Glu9, adjacent to the DPP IV cleavage site. We generated three novel Glu9-substituted GLP-1 analogues, (Pro9)GLP-1, (Phe9)GLP-1 and (Tyr9)GLP-1 and show for the first time that Glu9 of GLP-1 is important in DPP IV degradation, since replacing this amino acid, particularly with proline, substantially reduced susceptibility to degradation. All three novel GLP-1 analogues showed similar or slightly enhanced insulinotropic activity compared with native GLP-1 despite a moderate 4 10-fold reduction in receptor binding and cAMP generation. In addition, (Pro9)GLP 1 showed significant ability to moderate the plasma glucose excursion and increase circulating insulin concentrations in severely insulin resistant obese diabetic (ob/ob) mice. These observations indicate the importance of Glu9 for the biological activity of GLP-1 and susceptibility to DPP IVmediated degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To increase the structural efficiency of integrally machined aluminium alloy stiffened panels, it is plausible to introduce plate sub-stiffening to increase the local stability and thus panel static strength performance. Reported herein is the experimental validation of prismatic sub-stiffening, and the computational verification of such concepts within larger recurring structure. The experimental work demonstrates the potential to 'control' plate buckling modes. For the tested sub-stiffening design, an initial plate buckling performance gain of +89% over an equivalent mass design was measured. The numerical simulations, modelling the tested sub-stiffening design, demonstrate equivalent behaviour and performance gains (+66%) within larger structures consisting of recurring panels. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has demonstrated the potential to introduce plate element sub-stiffening to increase the local stability and thus static strength performance of integrally machined aluminium alloy stiffened panels. The introduction of plate element prismatic sub-stiffening modifies local plate buckling behaviour and within realistic design constraints, may produce sizable performance gains with equivalent mass designs. This article examines through experimental and computational analysis the potential of non-prismatic sub-stiffening for tailoring local plate stability performance. Using non-prismatic sub-stiffening, the experimental work demonstrates potential initial buckling performance gains with equivalent mass designs (+185%), and computationally, potential mass savings with equivalent static strength performance designs (-9.4%). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined whether the ownership type is associated with job insecurity and worry about job stability and whether the type of employment contract, positive leadership, and fair management moderated these associations. Survey data from 1249 Finnish female elderly care staff aged 18 to 69 years were used. Job insecurity and worry about job stability were highest in not-for-profit sheltered homes. However, positive leadership and fair management were able to mitigate this insecurity and worry. Job insecurity was highest among fixed-term employees in public sheltered homes or not-for-profit nursing homes. Thus, promoting good leadership and fair management would be of importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NAD(P)H quinone oxidoreductase 1 is involved in antioxidant defence and protection from cancer, stabilizing the apoptosis regulator p53 towards degradation. Here, we studied the enzymological, biochemical and biophysical properties of two cancer-associated variants (p.R139W and p.P187S). Both variants (especially p.187S) have lower thermal stability and greater susceptibility to proteolysis compared to the wild-type. p.P187S also has reduced activity due to a lower binding affinity for the FAD cofactor as assessed by activity measurements and direct titrations. Native gel electrophoresis and dynamic light scattering also suggest that p.P187S has a higher tendency to populate unfolded states under native conditions. Detailed thermal stability studies showed that all variants irreversibly denature causing dimer dissociation, while addition of FAD restores the stability of the polymorphic forms to wild-type levels. The kinetic destabilization induced by polymorphisms as well as the kinetic protection exerted by FAD was confirmed by measuring denaturation kinetics at temperatures close to physiological. Our data suggest that the main molecular mechanisms associated with these cancer-related variants are their low binding affinity for FAD and/or kinetic instability. Thus, pharmacological chaperones may be useful in the treatment of patients bearing these polymorphisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexes of arsenic compounds and glutathione are believed to play an essential part in the metabolism and transport of inorganic arsenic and its methylated species. Up to now, the evidence of their presence is mostly indirect. We studied the stability and Chromatographic behaviour of glutathione complexes with trivalent arsenic: i.e. AsIII(GS)3, MA III(GS)2 and DMAIII(GS) under different conditions. Standard ion chromatography using PRP X-100 and carbonate or formic acid buffer disintegrated the complexes, while all three complexes are stable and separable by reversed phase chromatography (0.1% formic acid/acetonitrile gradient). AsIII(GS)3 and MAIII(GS)2 were more stable than DMAIII(GS), which even under optimal conditions tended to degrade on the column at 25 °C. Chromatography at 6 °C can retain the integrity of the samples. These results shed more light on the interpretation of a vast number of previously published arsenic speciation studies, which have used Chromatographic separation techniques with the assumption that the integrity of the arsenic species is guaranteed. © The Royal Society of Chemistry 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this thesis aimed at applying the methodology known as metabonomics to the detailed study of a particular type of beer and its quality control, with basis on the use of multivariate analysis (MVA) to extract meaningful information from given analytical data sets. In Chapter 1, a detailed description of beer is given considering the brewing process, main characteristics and typical composition of beer, beer stability and the commonly used analytical techniques for beer analysis. The fundamentals of the analytical methods employed here, namely nuclear magnetic resonance (NMR) spectroscopy, gas-chromatography-mass spectrometry (GC-MS) and mid-infrared (MIR) spectroscopy, together with the description of the metabonomics methodology are described shortly in Chapter 2. In Chapter 3, the application of high resolution NMR to characterize the chemical composition of a lager beer is described. The 1H NMR spectrum obtained by direct analysis of beer show a high degree of complexity, confirming the great potential of NMR spectroscopy for the detection of a wide variety of families of compounds, in a single run. Spectral assignment was carried out by 2D NMR, resulting in the identification of about 40 compounds, including alcohols, amino acids, organic acids, nucleosides and sugars. In a second part of Chapter 3, the compositional variability of beer was assessed. For that purpose, metabonomics was applied to 1H NMR data (NMR/MVA) to evaluate beer variability between beers from the same brand (lager), produced nationally but differing in brewing site and date of production. Differences between brewing sites and/or dates were observed, reflecting compositional differences related to particular processing steps, including mashing, fermentation and maturation. Chapter 4 describes the quantification of organic acids in beer by NMR, using different quantitative methods: direct integration of NMR signals (vs. internal reference or vs. an external electronic reference, ERETIC method) and by quantitative statistical methods (using the partial least squares (PLS) regression) were developed and compared. PLS1 regression models were built using different quantitative methods as reference: capillary electrophoresis with direct and indirect detection and enzymatic essays. It was found that NMR integration results generally agree with those obtained by the best performance PLS models, although some overestimation for malic and pyruvic acids and an apparent underestimation for citric acid were observed. Finally, Chapter 5 describes metabonomic studies performed to better understand the forced aging (18 days, at 45 ºC) beer process. The aging process of lager beer was followed by i) NMR, ii) GC-MS, and iii) MIR spectroscopy. MVA methods of each analytical data set revealed clear separation between different aging days for both NMR and GC-MS data, enabling the identification of compounds closely related with the aging process: 5-hydroxymethylfurfural (5-HMF), organic acids, γ-amino butyric acid (GABA), proline and the ratio linear/branched dextrins (NMR domain) and 5-HMF, furfural, diethyl succinate and phenylacetaldehyde (known aging markers) and, for the first time, 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one xii (DDMP) and maltoxazine (by GC-MS domain). For MIR/MVA, no aging trend could be measured, the results reflecting the need of further experimental optimizations. Data correlation between NMR and GC-MS data was performed by outer product analysis (OPA) and statistical heterospectroscopy (SHY) methodologies, enabling the identification of further compounds (11 compounds, 5 of each are still unassigned) highly related with the aging process. Data correlation between sensory characteristics and NMR and GC-MS was also assessed through PLS1 regression models using the sensory response as reference. The results obtained showed good relationships between analytical data response and sensory response, particularly for the aromatic region of the NMR spectra and for GC-MS data (r > 0.89). However, the prediction power of all built PLS1 regression models was relatively low, possibly reflecting the low number of samples/tasters employed, an aspect to improve in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Febs Journal (2009)276:1776-1786

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endonuclease G (EndoG) is a well conserved mitochondrial nuclease with dual lethal and vital roles in the cell. It non-specifically cleaves endogenous DNA following apoptosis induction, but is also active in non-apoptotic cells for mitochondrial DNA (mtDNA) replication and may also be important for replication, repair and recombination of genomic DNA. The aim of our study was to examine whether EndoG exerts similar activities on exogenous DNA substrates such as plasmid DNA (pDNA) and viral DNA vectors, considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus (a cationic liposome transfection reagent), targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. To investigate possible effects of EndoG on viral DNA vectors, we constructed and evaluated AdsiEndoG, a first generation adenovirus (Ad5 ΔE1) vector encoding a shRNA directed against EndoG mRNA, along with appropriate Ad5 ΔE1 controls. Infection of HeLa cells with AdsiEndoG at a multiplicity of infection (MOI) of 10 p.f.u./cell resulted in an early cell proliferation defect, absent from cells infected at equivalent MOI with control Ad5 ΔE1 vectors. Replication of Ad5 ΔE1 DNA was detected for all vectors, but AdsiEndoG DNA accumulated to levels that were 50 fold higher than initially, four days after infection, compared to 14 fold for the next highest control Ad5 ΔE1 vector. Deregulation of the cell cycle by EndoG depletion, which is characterized by an accumulation of cells in the G2/M transition, is the most likely reason for the observed cell proliferation defect. The enhanced replication of AdsiEndoG is consistent with this conclusion, as Ad5 ΔE1 DNA replication is intimately related to cell cycling and prolongation or delay in G2/M greatly enhances this process. Furthermore, infection of HeLa with AdsiEndoG at MOI of 50 p.f.u./cell resulted in an almost complete disappearance of viable, adherent tumour cells from culture, whereas almost a third of the cells were still adherent after infection with control Ad5 ΔE1 vectors, relative to the non-infected control. Therefore, targeting of EndoG by RNAi is a viable strategy for improving the oncolytic properties of first generation adenovirus vectors. In addition, AdsiEndoG-mediated knockdown of EndoG reduced homologous recombination between pDNA substrates in HeLa cells. The effect was modest but, nevertheless demonstrated that the proposed role of EndoG in homologous recombination of cellular DNA also extends to exogenous DNA substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mega-scale glacial lineations (MSGLs) are longitudinally aligned corrugations (ridge-groove structures 6-100 km long) in sediment produced subglacially. They are indicators of fast flow and a common signature of ice-stream beds. We develop a qualitative theory that accounts for their formation, and use numerical modelling, and observations of ice-stream beds to provide supporting evidence. Ice in contact with a rough (scale of 10-10(3) m) bedrock surface will mimic the form of the bed. Because of flow acceleration and convergence in ice-stream onset zones, the ice-base roughness elements experience transverse strain, transforming them from irregular bumps into longitudinally aligned keels of ice protruding downwards. Where such keels slide across a soft sedimentary bed, they plough through the sediments, carving elongate grooves, and deforming material up into intervening ridges. This explains MSGLs and has important implications for ice-stream mechanics. Groove ploughing provides the means to acquire new lubricating sediment and to transport large volumes of it downstream. Keels may provide basal drag in the force budget of ice streams, thereby playing a role in flow regulation and stability We speculate that groove ploughing permits significant ice-stream widening, thus facilitating high-magnitude ice discharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different stabilising salts and calcium chloride were added to raw milk to evaluate changes in pH, ionic calcium, ethanol stability, casein micelle size and zeta potential. These milk samples were then sterilised at 121 °C for 15 min and stored for 6 months to determine how these properties changed. Addition of tri-sodium citrate (TSC) and di-sodium hydrogen phosphate (DSHP) to milk reduced ionic calcium, increased pH and increased ethanol stability in a concentration-dependent fashion. There was relatively little change in casein micelle size and a slight decrease in zeta potential. Sodium hexametaphosphate (SHMP) also reduced ionic calcium considerably, but its effect on pH was less noticeable. In contrast, sodium dihydrogen phosphate (SDHP) reduced pH but had little effect on ionic calcium. In-container sterilisation of these samples reduced pH, increased ethanol stability and increased casein micelle size, but had variable effects on ionic calcium; for DSHP and SDHP, ionic calcium decreased after sterilisation but, for SHMP, it remained little changed or increased. Milk containing 3.2 mM SHMP and more than 4.5 mM CaCl2 coagulated upon sterilisation. All other samples were stable but there were differences in browning, which increased in intensity as milk pH increased. Heat-induced sediment was not directly related to ionic calcium concentration, so reducing ionic calcium was not the only consideration in terms of improving heat stability. After 6 months of storage, the most acceptable product, in appearance, was that containing SDHP, as this minimised browning during sterilisation and further development of browning during storage.