917 resultados para Spectral Feature Extraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes the development of an analytical method for the determination of methiocarb and its degradation products (methiocarb sulfoxide and methiocarb sulfone) in banana samples, using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure followed by liquid chromatography coupled to photodiode array detector (LCPAD). Calibration curves were linear in the range of 0.5−10 mg L−1 for all compounds studied. The average recoveries, measured at 0.1 mg kg−1 wet weight, were 92.0 (RSD = 1.8%, n = 3), 84.0 (RSD = 3.9%, n = 3), and 95.2% (RSD = 1.9%, n = 3) for methiocarb sulfoxide, methiocarb sulfone, and methiocarb, respectively. Banana samples treated with methiocarb were collected from an experimental field. The developed method was applied to the analysis of 24 samples (peel and pulp) and to 5 banana pulp samples. Generally, the highest levels were found for methiocarb sulfoxide and methiocarb. Methiocarb sulfone levels were below the limit of quantification, except in one sample (not detected).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QuEChERS original method was modified into a new version for pesticides determination in soils. The QuEChERS method is based on liquid–liquid portioning with ACN and was followed by cleanup step using dispersive SPE and disposable pipette tips. Gas chromatographic separation with MS detection was carried out for pesticides quantification. The method was validated using recovery experiments for 36 multiclass pesticides. Mean recoveries of pesticides at each of the four spiking levels between 10–300 µg/kg of soil ranged from 70–120% for 26 pesticides with RSD values less than 15%. The method achieved low limit of detection less than 7.6 µ g/kg. Matrix effects were observed for 13 pesticides. Matrix effects were compensated by using matrix-matched calibration. The method was applied successfully using d-SPE or DPX in the analysis of the pesticides in soils from organic farming and integrated pest management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food lipid major components are usually analyzed by individual methodologies using diverse extractive procedures for each class. A simple and fast extractive procedure was devised for the sequential analysis of vitamin E, cholesterol, fatty acids, and total fat estimation in seafood, reducing analyses time and organic solvent consumption. Several liquid/liquid-based extractive methodologies using chlorinated and non-chlorinated organic solvents were tested. The extract obtained is used for vitamin E quantification (normal-phase HPLC with fluorescence detection), total cholesterol (normal-phase HPLC with UV detection), fatty acid profile, and total fat estimation (GC-FID), all accomplished in <40 min. The final methodology presents an adequate linearity range and sensitivity for tocopherol and cholesterol, with intra- and inter-day precisions (RSD) from 3 to 11 % for all the components. The developed methodology was applied to diverse seafood samples with positive outcomes, making it a very attractive technique for routine analyses in standard equipped laboratories in the food quality control field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method using microwave-assisted extraction (MAE) and liquid chromatography (LC) with fluorescence detection (FD) for the determination of ochratoxin A (OTA) in bread samples is described. A 24 orthogonal composite design coupled with response surface methodology was used to study the influence of MAE parameters (extraction time, temperature, solvent volume, and stirring speed) in order to maximize OTA recovery. The optimized MAE conditions were the following: 25 mL of acetonitrile, 10 min of extraction, at 80 °C, and maximum stirring speed. Validation of the overall methodology was performed by spiking assays at five levels (0.1–3.00 ng/g). The quantification limit was 0.005 ng/g. The established method was then applied to 64 bread samples (wheat, maize, and wheat/maize bread) collected in Oporto region (Northern Portugal). OTAwas detected in 84 % of the samples with a maximum value of 2.87 ng/g below the European maximum limit established for OTA in cereal products of 3 ng/g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The automatic acquisition of lexical associations from corpora is a crucial issue for Natural Language Processing. A lexical association is a recurrent combination of words that co-occur together more often than expected by chance in a given domain. In fact, lexical associations define linguistic phenomena such as idiomes, collocations or compound words. Due to the fact that the sense of a lexical association is not compositionnal, their identification is fundamental for the realization of analysis and synthesis that take into account all the subtilities of the language. In this report, we introduce a new statistically-based architecture that extracts from naturally occurring texts contiguous and non contiguous. For that purpose, three new concepts have been defined : the positional N-gram models, the Mutual Expectation and the GenLocalMaxs algorithm. Thus, the initial text is fisrtly transformed in a set of positionnal N-grams i.e ordered vectors of simple lexical units. Then, an association measure, the Mutual Expectation, evaluates the degree of cohesion of each positional N-grams based on the identification of local maximum values of Mutual Expectation. Great efforts have also been carried out to evaluate our metodology. For that purpose, we have proposed the normalisation of five well-known association measures and shown that both the Mutual Expectation and the GenLocalMaxs algorithm evidence significant improvements comparing to existent metodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the change of the ultraviolet spectral bands starting from 0.1 to 5.0 nm slit width in the spectral range of 200–400 nm. The analysis of the spectral bands is carried out by using the multidimensional scaling (MDS) approach to reach the latent spectral background. This approach indicates that 0.1 nm slit width gives higher-order noise together with better spectral details. Thus, 5.0 nm slit width possesses the higher peak amplitude and lower-order noise together with poor spectral details. In the above-mentioned conditions, the main problem is to find the relationship between the spectral band properties and the slit width. For this aim, the MDS tool is to used recognize the hidden information of the ultraviolet spectra of sildenafil citrate by using a ShimadzuUV–VIS 2550, which is in theworld the best double monochromator instrument. In this study, the proposed mathematical approach gives the rich findings for the efficient use of the spectrophotometer in the qualitative and quantitative studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In visual sensor networks, local feature descriptors can be computed at the sensing nodes, which work collaboratively on the data obtained to make an efficient visual analysis. In fact, with a minimal amount of computational effort, the detection and extraction of local features, such as binary descriptors, can provide a reliable and compact image representation. In this paper, it is proposed to extract and code binary descriptors to meet the energy and bandwidth constraints at each sensing node. The major contribution is a binary descriptor coding technique that exploits the correlation using two different coding modes: Intra, which exploits the correlation between the elements that compose a descriptor; and Inter, which exploits the correlation between descriptors of the same image. The experimental results show bitrate savings up to 35% without any impact in the performance efficiency of the image retrieval task. © 2014 EURASIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In research on Silent Speech Interfaces (SSI), different sources of information (modalities) have been combined, aiming at obtaining better performance than the individual modalities. However, when combining these modalities, the dimensionality of the feature space rapidly increases, yielding the well-known "curse of dimensionality". As a consequence, in order to extract useful information from this data, one has to resort to feature selection (FS) techniques to lower the dimensionality of the learning space. In this paper, we assess the impact of FS techniques for silent speech data, in a dataset with 4 non-invasive and promising modalities, namely: video, depth, ultrasonic Doppler sensing, and surface electromyography. We consider two supervised (mutual information and Fisher's ratio) and two unsupervised (meanmedian and arithmetic mean geometric mean) FS filters. The evaluation was made by assessing the classification accuracy (word recognition error) of three well-known classifiers (knearest neighbors, support vector machines, and dynamic time warping). The key results of this study show that both unsupervised and supervised FS techniques improve on the classification accuracy on both individual and combined modalities. For instance, on the video component, we attain relative performance gains of 36.2% in error rates. FS is also useful as pre-processing for feature fusion. Copyright © 2014 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible range to telecom band spectral translation is accomplished using an amorphous SiC pi'n/pin wavelength selector under appropriate front and back optical light bias. Results show that background intensity works as selectors in the infrared region, shifting the sensor sensitivity. Low intensities select the near-infrared range while high intensities select the visible part according to its wavelength. Here, the optical gain is very high in the infrared/red range, decreases in the green range, stays close to one in the blue region and strongly decreases in the near-UV range. The transfer characteristics effects due to changes in steady state light intensity and wavelength backgrounds are presented. The relationship between the optical inputs and the output signal is established. A capacitive optoelectronic model is presented and tested using the experimental results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dried flowers and leaves of Origanum glandulosum Desf. were submitted to hydrodistillation (HD) and supercritical fluid extraction with CO2 (SFE). The essential oils isolated by HD and volatile oils obtained by SFE were analysed by GC and GC/MS. Total phenolics content and antioxidant effectiveness were performed. The main components of the essential oils from Bargou and Nefza were: p-cymene (40.4% and 39%), thymol (38.7% and 34.4%) and γ- terpinene (12.3% and 19.2%), respectively. The major components obtain by SFE in the volatile oil, from Bargou and Nefza, were: p-cymene (32.3% and 36.2%), thymol (41% and 40%) and γ-terpinene (20.3% and 13.3%). Total phenolic content, expressed in gallic acid equivalent (GAE) g kg-1 dry weight, varied from 12 to 27 g kg-1 dw, and the ability to scavenge the DPPH radicals, expressed by IC50 ranged from 44 to143 mg L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F , satisfying the following property: for every monic polynomial f(x) = xn + an-1xn-1 + … +a1x + aο over F, with a root in F and aο = (-1)n det(AB), there are nonsingular matrices X, Y ϵ Fnxn such that X A X-1 Y BY-1 has characteristic polynomial f (x). © 2014 © 2014 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.