930 resultados para Spatial Query Processing And Optimization
Resumo:
The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in cognition and brain health.
Resumo:
As the fidelity of virtual environments (VE) continues to increase, the possibility of using them as training platforms is becoming increasingly realistic for a variety of application domains, including military and emergency personnel training. In the past, there was much debate on whether the acquisition and subsequent transfer of spatial knowledge from VEs to the real world is possible, or whether the differences in medium during training would essentially be an obstacle to truly learning geometric space. In this paper, the authors present various cognitive and environmental factors that not only contribute to this process, but also interact with each other to a certain degree, leading to a variable exposure time requirement in order for the process of spatial knowledge acquisition (SKA) to occur. The cognitive factors that the authors discuss include a variety of individual user differences such as: knowledge and experience; cognitive gender differences; aptitude and spatial orientation skill; and finally, cognitive styles. Environmental factors discussed include: Size, Spatial layout complexity and landmark distribution. It may seem obvious that since every individual's brain is unique - not only through experience, but also through genetic predisposition that a one size fits all approach to training would be illogical. Furthermore, considering that various cognitive differences may further emerge when a certain stimulus is present (e.g. complex environmental space), it would make even more sense to understand how these factors can impact spatial memory, and to try to adapt the training session by providing visual/auditory cues as well as by changing the exposure time requirements for each individual. The impact of this research domain is important to VE training in general, however within service and military domains, guaranteeing appropriate spatial training is critical in order to ensure that disorientation does not occur in a life or death scenario.
Resumo:
In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form intriguingly organized complexes. Two intermediate complexes, pre-40S and pre-60S, are formed at the early stages of 35S pre-rRNA processing and give rise to the mature ribosome subunits. Each of these complexes contains specific pre-rRNAs, some ribosomal proteins and processing factors. The novel yeast protein Utp25p has previously been identified in the nucleolus, an indication that this protein could be involved in ribosome biogenesis. Here we show that Utp25p interacts with the SSU processome proteins Sas10p and Mpp10p, and affects 18S rRNA maturation. Depletion of Utp25p leads to accumulation of the pre-rRNA 35S and the aberrant rRNA 23S, and to a severe reduction in 40S ribosomal subunit levels. Our results indicate that Utp25p is a novel SSU processome subunit involved in pre-40S maturation.
Resumo:
The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The bubble crab Dotilla fenestrata forms very dense populations on the sand flats of the eastern coast of Inhaca Island, Mozambique, making it an interesting biological model to examine spatial distribution patterns and test the relative efficiency of common sampling methods. Due to its apparent ecological importance within the sandy intertidal community, understanding the factors ruling the dynamics of Dotilla populations is also a key issue. In this study, different techniques of estimating crab density are described, and the trends of spatial distribution of the different population categories are shown. The studied populations are arranged in discrete patches located at the well-drained crests of nearly parallel mega sand ripples. For a given sample size, there was an obvious gain in precision by using a stratified random sampling technique, considering discrete patches as strata, compared to the simple random design. Density average and variance differed considerably among patches since juveniles and ovigerous females were found clumped, with higher densities at the lower and upper shore levels, respectively. Burrow counting was found to be an adequate method for large-scale sampling, although consistently underestimating actual crab density by nearly half. Regression analyses suggested that crabs smaller than 2.9 mm carapace width tend to be undetected in visual burrow counts. A visual survey of sampling plots over several patches of a large Dotilla population showed that crab density varied in an interesting oscillating pattern, apparently following the topography of the sand flat. Patches extending to the lower shore contained higher densities than those mostly covering the higher shore. Within-patch density variability also pointed to the same trend, but the density increment towards the lowest shore level varied greatly among the patches compared.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A body of research has developed within the context of nonlinear signal and image processing that deals with the automatic, statistical design of digital window-based filters. Based on pairs of ideal and observed signals, a filter is designed in an effort to minimize the error between the ideal and filtered signals. The goodness of an optimal filter depends on the relation between the ideal and observed signals, but the goodness of a designed filter also depends on the amount of sample data from which it is designed. In order to lessen the design cost, a filter is often chosen from a given class of filters, thereby constraining the optimization and increasing the error of the optimal filter. To a great extent, the problem of filter design concerns striking the correct balance between the degree of constraint and the design cost. From a different perspective and in a different context, the problem of constraint versus sample size has been a major focus of study within the theory of pattern recognition. This paper discusses the design problem for nonlinear signal processing, shows how the issue naturally transitions into pattern recognition, and then provides a review of salient related pattern-recognition theory. In particular, it discusses classification rules, constrained classification, the Vapnik-Chervonenkis theory, and implications of that theory for morphological classifiers and neural networks. The paper closes by discussing some design approaches developed for nonlinear signal processing, and how the nature of these naturally lead to a decomposition of the error of a designed filter into a sum of the following components: the Bayes error of the unconstrained optimal filter, the cost of constraint, the cost of reducing complexity by compressing the original signal distribution, the design cost, and the contribution of prior knowledge to a decrease in the error. The main purpose of the paper is to present fundamental principles of pattern recognition theory within the framework of active research in nonlinear signal processing.
Resumo:
A digital image processing and analysis method has been developed to classify shape and evaluate size and morphology parameters of corrosion pits. This method seems to be effective to analyze surfaces with low or high degree of pitting formation. Theoretical geometry data have been compared against experimental data obtained for titanium and aluminum alloys subjected to different corrosion tests. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte) has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses) connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena. © MSM 2011.
Resumo:
Visual perception and action are strongly linked with parallel processing channels connecting the retina, the lateral geniculate nucleus, and the input layers of the primary visual cortex. Achromatic vision is provided by at least two of such channels formed by the M and P neurons. These cell pathways are similarly organized in primates having different lifestyles, including species that are diurnal, nocturnal, and which exhibit a variety of color vision phenotypes. We describe the M and P cell properties by 3D Gábor functions and their 3D Fourier transform. The M and P cells occupy different loci in the Gábor information diagram or Fourier Space. This separation allows the M and P pathways to transmit visual signals with distinct 6D joint entropy for space, spatial frequency, time, and temporal frequency. By combining the M and P impacts on the cortical neurons beyond V1 input layers, the cortical pathways are able to process aspects of visual stimuli with a better precision than it would be possible using the M or P pathway alone. This performance fulfils the requirements of different behavioral tasks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)