923 resultados para Spatial Data Infrastructures (SDI)
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.
Resumo:
Background: Conventional magnetic resonance imaging (MRI) techniques are highly sensitive to detect multiple sclerosis (MS) plaques, enabling a quantitative assessment of inflammatory activity and lesion load. In quantitative analyses of focal lesions, manual or semi-automated segmentations have been widely used to compute the total number of lesions and the total lesion volume. These techniques, however, are both challenging and time-consuming, being also prone to intra-observer and inter-observer variability.Aim: To develop an automated approach to segment brain tissues and MS lesions from brain MRI images. The goal is to reduce the user interaction and to provide an objective tool that eliminates the inter- and intra-observer variability.Methods: Based on the recent methods developed by Souplet et al. and de Boer et al., we propose a novel pipeline which includes the following steps: bias correction, skull stripping, atlas registration, tissue classification, and lesion segmentation. After the initial pre-processing steps, a MRI scan is automatically segmented into 4 classes: white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and partial volume. An expectation maximisation method which fits a multivariate Gaussian mixture model to T1-w, T2-w and PD-w images is used for this purpose. Based on the obtained tissue masks and using the estimated GM mean and variance, we apply an intensity threshold to the FLAIR image, which provides the lesion segmentation. With the aim of improving this initial result, spatial information coming from the neighbouring tissue labels is used to refine the final lesion segmentation.Results:The experimental evaluation was performed using real data sets of 1.5T and the corresponding ground truth annotations provided by expert radiologists. The following values were obtained: 64% of true positive (TP) fraction, 80% of false positive (FP) fraction, and an average surface distance of 7.89 mm. The results of our approach were quantitatively compared to our implementations of the works of Souplet et al. and de Boer et al., obtaining higher TP and lower FP values.Conclusion: Promising MS lesion segmentation results have been obtained in terms of TP. However, the high number of FP which is still a well-known problem of all the automated MS lesion segmentation approaches has to be improved in order to use them for the standard clinical practice. Our future work will focus on tackling this issue.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
The interaction of tunneling with groundwater is a problem both from an environmental and an engineering point of view. In fact, tunnel drilling may cause a drawdown of piezometric levels and water inflows into tunnels that may cause problems during excavation of the tunnel. While the influence of tunneling on the regional groundwater systems may be adequately predicted in porous media using analytical solutions, such an approach is difficult to apply in fractured rocks. Numerical solutions are preferable and various conceptual approaches have been proposed to describe and model groundwater flow through fractured rock masses, ranging from equivalent continuum models to discrete fracture network simulation models. However, their application needs many preliminary investigations on the behavior of the groundwater system based on hydrochemical and structural data. To study large scale flow systems in fractured rocks of mountainous terrains, a comprehensive study was conducted in southern Switzerland, using as case studies two infrastructures actually under construction: (i) the Monte Ceneri base railway tunnel (Ticino), and the (ii) San Fedele highway tunnel (Roveredo, Graubiinden). The chosen approach in this study combines the temporal and spatial variation of geochemical and geophysical measurements. About 60 localities from both surface and underlying tunnels were temporarily and spatially monitored during more than one year. At first, the project was focused on the collection of hydrochemical and structural data. A number of springs, selected in the area surrounding the infrastructures, were monitored for discharge, electric conductivity, pH, and temperature. Water samples (springs, tunnel inflows and rains) were taken for isotopic analysis; in particular the stable isotope composition (δ2Η, δ180 values) can reflect the origin of the water, because of spatial (recharge altitude, topography, etc.) and temporal (seasonal) effects on precipitation which in turn strongly influence the isotopic composition of groundwater. Tunnel inflows in the accessible parts of the tunnels were also sampled and, if possible, monitored with time. Noble-gas concentrations and their isotope ratios were used in selected locations to better understand the origin and the circulation of the groundwater. In addition, electrical resistivity and VLF-type electromagnetic surveys were performed to identify water bearing fractures and/or weathered areas that could be intersected at depth during tunnel construction. The main goal of this work was to demonstrate that these hydrogeological data and geophysical methods, combined with structural and hydrogeological information, can be successfully used in order to develop hydrogeological conceptual models of the groundwater flow in regions to be exploited for tunnels. The main results of the project are: (i) to have successfully tested the application of electrical resistivity and VLF-electromagnetic surveys to asses water-bearing zones during tunnel drilling; (ii) to have verified the usefulness of noble gas, major ion and stable isotope compositions as proxies for the detection of faults and to understand the origin of the groundwater and its flow regimes (direct rain water infiltration or groundwater of long residence time); and (iii) to have convincingly tested the combined application of a geochemical and geophysical approach to assess and predict the vulnerability of springs to tunnel drilling. - L'interférence entre eaux souterraines et des tunnels pose des problèmes environnementaux et de génie civile. En fait, la construction d'un tunnel peut faire abaisser le niveau des nappes piézométriques et faire infiltrer de l'eau dans le tunnel et ainsi créer des problème pendant l'excavation. Alors que l'influence de la construction d'un tunnel sur la circulation régionale de l'eau souterraine dans des milieux poreux peut être prédite relativement facilement par des solution analytiques de modèles, ceci devient difficile dans des milieux fissurés. Dans ce cas-là, des solutions numériques sont préférables et plusieurs approches conceptuelles ont été proposées pour décrire et modéliser la circulation d'eau souterraine à travers les roches fissurées, en allant de modèles d'équivalence continue à des modèles de simulation de réseaux de fissures discrètes. Par contre, leur application demande des investigations importantes concernant le comportement du système d'eau souterraine basées sur des données hydrochimiques et structurales. Dans le but d'étudier des grands systèmes de circulation d'eau souterraine dans une région de montagnes, une étude complète a été fait en Suisse italienne, basée sur deux grandes infrastructures actuellement en construction: (i) Le tunnel ferroviaire de base du Monte Ceneri (Tessin) et (ii) le tunnel routière de San Fedele (Roveredo, Grisons). L'approche choisie dans cette étude est la combinaison de variations temporelles et spatiales des mesures géochimiques et géophysiques. Environs 60 localités situées à la surface ainsi que dans les tunnels soujacents ont été suiviès du point de vue temporel et spatial pendant plus de un an. Dans un premier temps le projet se focalisait sur la collecte de données hydrochimiques et structurales. Un certain nombre de sources, sélectionnées dans les environs des infrastructures étudiées ont été suivies pour le débit, la conductivité électrique, le pH et la température. De l'eau (sources, infiltration d'eau de tunnel et pluie) a été échantillonnés pour des analyses isotopiques; ce sont surtout les isotopes stables (δ2Η, δ180) qui peuvent indiquer l'origine d'une eaux, à cause de la dépendance d'effets spatiaux (altitude de recharge, topographie etc.) ainsi que temporels (saisonaux) sur les précipitations météoriques , qui de suite influencent ainsi la composition isotopique de l'eau souterraine. Les infiltrations d'eau dans les tunnels dans les parties accessibles ont également été échantillonnées et si possible suivies au cours du temps. La concentration de gaz nobles et leurs rapports isotopiques ont également été utilisées pour quelques localités pour mieux comprendre l'origine et la circulation de l'eau souterraine. En plus, des campagnes de mesures de la résistivité électrique et électromagnétique de type VLF ont été menées afin d'identifier des zone de fractures ou d'altération qui pourraient interférer avec les tunnels en profondeur pendant la construction. Le but principal de cette étude était de démontrer que ces données hydrogéologiques et géophysiques peuvent être utilisées avec succès pour développer des modèles hydrogéologiques conceptionels de tunnels. Les résultats principaux de ce travail sont : i) d'avoir testé avec succès l'application de méthodes de la tomographie électrique et des campagnes de mesures électromagnétiques de type VLF afin de trouver des zones riches en eau pendant l'excavation d'un tunnel ; ii) d'avoir prouvé l'utilité des gaz nobles, des analyses ioniques et d'isotopes stables pour déterminer l'origine de l'eau infiltrée (de la pluie par le haut ou ascendant de l'eau remontant des profondeurs) et leur flux et pour déterminer la position de failles ; et iii) d'avoir testé d'une manière convainquant l'application combinée de méthodes géochimiques et géophysiques pour juger et prédire la vulnérabilité de sources lors de la construction de tunnels. - L'interazione dei tunnel con il circuito idrico sotterraneo costituisce un problema sia dal punto di vista ambientale che ingegneristico. Lo scavo di un tunnel puô infatti causare abbassamenti dei livelli piezometrici, inoltre le venute d'acqua in galleria sono un notevole problema sia in fase costruttiva che di esercizio. Nel caso di acquiferi in materiale sciolto, l'influenza dello scavo di un tunnel sul circuito idrico sotterraneo, in genere, puô essere adeguatamente predetta attraverso l'applicazione di soluzioni analitiche; al contrario un approccio di questo tipo appare inadeguato nel caso di scavo in roccia. Per gli ammassi rocciosi fratturati sono piuttosto preferibili soluzioni numeriche e, a tal proposito, sono stati proposti diversi approcci concettuali; nella fattispecie l'ammasso roccioso puô essere modellato come un mezzo discreto ο continuo équivalente. Tuttavia, una corretta applicazione di qualsiasi modello numerico richiede necessariamente indagini preliminari sul comportamento del sistema idrico sotterraneo basate su dati idrogeochimici e geologico strutturali. Per approfondire il tema dell'idrogeologia in ammassi rocciosi fratturati tipici di ambienti montani, è stato condotto uno studio multidisciplinare nel sud della Svizzera sfruttando come casi studio due infrastrutture attualmente in costruzione: (i) il tunnel di base del Monte Ceneri (canton Ticino) e (ii) il tunnel autostradale di San Fedele (Roveredo, canton Grigioni). L'approccio di studio scelto ha cercato di integrare misure idrogeochimiche sulla qualité e quantité delle acque e indagini geofisiche. Nella fattispecie sono state campionate le acque in circa 60 punti spazialmente distribuiti sia in superficie che in sotterraneo; laddove possibile il monitoraggio si è temporalmente prolungato per più di un anno. In una prima fase, il progetto di ricerca si è concentrato sull'acquisizione dati. Diverse sorgenti, selezionate nelle aree di possibile influenza attorno allé infrastrutture esaminate, sono state monitorate per quel che concerne i parametri fisico-chimici: portata, conduttività elettrica, pH e temperatura. Campioni d'acqua sono stati prelevati mensilmente su sorgenti, venute d'acqua e precipitazioni, per analisi isotopiche; nella fattispecie, la composizione in isotopi stabili (δ2Η, δ180) tende a riflettere l'origine delle acque, in quanto, variazioni sia spaziali (altitudine di ricarica, topografia, etc.) che temporali (variazioni stagionali) della composizione isotopica delle precipitazioni influenzano anche le acque sotterranee. Laddove possibile, sono state campionate le venute d'acqua in galleria sia puntualmente che al variare del tempo. Le concentrazioni dei gas nobili disciolti nell'acqua e i loro rapporti isotopici sono stati altresi utilizzati in alcuni casi specifici per meglio spiegare l'origine delle acque e le tipologie di circuiti idrici sotterranei. Inoltre, diverse indagini geofisiche di resistività elettrica ed elettromagnetiche a bassissima frequenza (VLF) sono state condotte al fine di individuare le acque sotterranee circolanti attraverso fratture dell'ammasso roccioso. Principale obiettivo di questo lavoro è stato dimostrare come misure idrogeochimiche ed indagini geofisiche possano essere integrate alio scopo di sviluppare opportuni modelli idrogeologici concettuali utili per lo scavo di opere sotterranee. I principali risultati ottenuti al termine di questa ricerca sono stati: (i) aver testato con successo indagini geofisiche (ERT e VLF-EM) per l'individuazione di acque sotterranee circolanti attraverso fratture dell'ammasso roccioso e che possano essere causa di venute d'acqua in galleria durante lo scavo di tunnel; (ii) aver provato l'utilità di analisi su gas nobili, ioni maggiori e isotopi stabili per l'individuazione di faglie e per comprendere l'origine delle acque sotterranee (acque di recente infiltrazione ο provenienti da circolazioni profonde); (iii) aver testato in maniera convincente l'integrazione delle indagini geofisiche e di misure geochimiche per la valutazione della vulnérabilité delle sorgenti durante lo scavo di nuovi tunnel. - "La NLFA (Nouvelle Ligne Ferroviaire à travers les Alpes) axe du Saint-Gothard est le plus important projet de construction de Suisse. En bâtissant la nouvelle ligne du Saint-Gothard, la Suisse réalise un des plus grands projets de protection de l'environnement d'Europe". Cette phrase, qu'on lit comme présentation du projet Alptransit est particulièrement éloquente pour expliquer l'utilité des nouvelles lignes ferroviaires transeuropéens pour le développement durable. Toutefois, comme toutes grandes infrastructures, la construction de nouveaux tunnels ont des impacts inévitables sur l'environnement. En particulier, le possible drainage des eaux souterraines réalisées par le tunnel peut provoquer un abaissement du niveau des nappes piézométriques. De plus, l'écoulement de l'eau à l'intérieur du tunnel, conduit souvent à des problèmes d'ingénierie. Par exemple, d'importantes infiltrations d'eau dans le tunnel peuvent compliquer les phases d'excavation, provoquant un retard dans l'avancement et dans le pire des cas, peuvent mettre en danger la sécurité des travailleurs. Enfin, l'infiltration d'eau peut être un gros problème pendant le fonctionnement du tunnel. Du point de vue de la science, avoir accès à des infrastructures souterraines représente une occasion unique d'obtenir des informations géologiques en profondeur et pour échantillonner des eaux autrement inaccessibles. Dans ce travail, nous avons utilisé une approche pluridisciplinaire qui intègre des mesures d'étude hydrogéochimiques effectués sur les eaux de surface et des investigations géophysiques indirects, tels que la tomographic de résistivité électrique (TRE) et les mesures électromagnétiques de type VLF. L'étude complète a été fait en Suisse italienne, basée sur deux grandes infrastructures actuellement en construction, qui sont le tunnel ferroviaire de base du Monte Ceneri, une partie du susmentionné projet Alptransit, situé entièrement dans le canton Tessin, et le tunnel routière de San Fedele, situé a Roveredo dans le canton des Grisons. Le principal objectif était de montrer comment il était possible d'intégrer les deux approches, géophysiques et géochimiques, afin de répondre à la question de ce que pourraient être les effets possibles dû au drainage causés par les travaux souterrains. L'accès aux galeries ci-dessus a permis une validation adéquate des enquêtes menées confirmant, dans chaque cas, les hypothèses proposées. A cette fin, nous avons fait environ 50 profils géophysiques (28 imageries électrique bidimensionnels et 23 électromagnétiques) dans les zones de possible influence par le tunnel, dans le but d'identifier les fractures et les discontinuités dans lesquelles l'eau souterraine peut circuler. De plus, des eaux ont été échantillonnés dans 60 localités situées la surface ainsi que dans les tunnels subjacents, le suivi mensuelle a duré plus d'un an. Nous avons mesurés tous les principaux paramètres physiques et chimiques: débit, conductivité électrique, pH et température. De plus, des échantillons d'eaux ont été prélevés pour l'analyse mensuelle des isotopes stables de l'hydrogène et de l'oxygène (δ2Η, δ180). Avec ces analyses, ainsi que par la mesure des concentrations des gaz rares dissous dans les eaux et de leurs rapports isotopiques que nous avons effectués dans certains cas spécifiques, il était possible d'expliquer l'origine des différents eaux souterraines, les divers modes de recharge des nappes souterraines, la présence de possible phénomènes de mélange et, en général, de mieux expliquer les circulations d'eaux dans le sous-sol. Le travail, même en constituant qu'une réponse partielle à une question très complexe, a permis d'atteindre certains importants objectifs. D'abord, nous avons testé avec succès l'applicabilité des méthodes géophysiques indirectes (TRE et électromagnétiques de type VLF) pour prédire la présence d'eaux souterraines dans le sous-sol des massifs rocheux. De plus, nous avons démontré l'utilité de l'analyse des gaz rares, des isotopes stables et de l'analyses des ions majeurs pour la détection de failles et pour comprendre l'origine des eaux souterraines (eau de pluie par le haut ou eau remontant des profondeurs). En conclusion, avec cette recherche, on a montré que l'intégration des ces informations (géophysiques et géochimiques) permet le développement de modèles conceptuels appropriés, qui permettant d'expliquer comment l'eau souterraine circule. Ces modèles permettent de prévoir les infiltrations d'eau dans les tunnels et de prédire la vulnérabilité de sources et des autres ressources en eau lors de construction de tunnels.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
1. Few examples of habitat-modelling studies of rare and endangered species exist in the literature, although from a conservation perspective predicting their distribution would prove particularly useful. Paucity of data and lack of valid absences are the probable reasons for this shortcoming. Analytic solutions to accommodate the lack of absence include the ecological niche factor analysis (ENFA) and the use of generalized linear models (GLM) with simulated pseudo-absences. 2. In this study we tested a new approach to generating pseudo-absences, based on a preliminary ENFA habitat suitability (HS) map, for the endangered species Eryngium alpinum. This method of generating pseudo-absences was compared with two others: (i) use of a GLM with pseudo-absences generated totally at random, and (ii) use of an ENFA only. 3. The influence of two different spatial resolutions (i.e. grain) was also assessed for tackling the dilemma of quality (grain) vs. quantity (number of occurrences). Each combination of the three above-mentioned methods with the two grains generated a distinct HS map. 4. Four evaluation measures were used for comparing these HS maps: total deviance explained, best kappa, Gini coefficient and minimal predicted area (MPA). The last is a new evaluation criterion proposed in this study. 5. Results showed that (i) GLM models using ENFA-weighted pseudo-absence provide better results, except for the MPA value, and that (ii) quality (spatial resolution and locational accuracy) of the data appears to be more important than quantity (number of occurrences). Furthermore, the proposed MPA value is suggested as a useful measure of model evaluation when used to complement classical statistical measures. 6. Synthesis and applications. We suggest that the use of ENFA-weighted pseudo-absence is a possible way to enhance the quality of GLM-based potential distribution maps and that data quality (i.e. spatial resolution) prevails over quantity (i.e. number of data). Increased accuracy of potential distribution maps could help to define better suitable areas for species protection and reintroduction.
Resumo:
Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.
Resumo:
We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.
Resumo:
Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One-PEP725-has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other-NECTAR-includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.
Resumo:
The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.
Resumo:
In this paper we introduce a highly efficient reversible data hiding system. It is based on dividing the image into tiles and shifting the histograms of each image tile between its minimum and maximum frequency. Data are then inserted at the pixel level with the largest frequency to maximize data hiding capacity. It exploits the special properties of medical images, where the histogram of their nonoverlapping image tiles mostly peak around some gray values and the rest of the spectrum is mainlyempty. The zeros (or minima) and peaks (maxima) of the histograms of the image tiles are then relocated to embed the data. The grey values of some pixels are therefore modified.High capacity, high fidelity, reversibility and multiple data insertions are the key requirements of data hiding in medical images. We show how histograms of image tiles of medical images can be exploited to achieve these requirements. Compared with data hiding method applied to the whole image, our scheme can result in 30%-200% capacity improvement and still with better image quality, depending on the medical image content. Additional advantages of the proposed method include hiding data in the regions of non-interest and better exploitation of spatial masking.