939 resultados para Solubility isotherm
Resumo:
The solubility of organic compounds is a topic of great importance in chemistry and of interest in several areas, such as materials, drugs and the environment. In this paper, the solubility of these species is discussed in terms of their properties, such as the predominant type of chemical bond, molecular structure, polarity and types of intermolecular interactions. Examples of biological processes fundamental for sustainability of life and related with the solubility of chemical species are presented and discussed.
Resumo:
Croton zehntneri, a plant native to northeastern Brazil, is widely used in folk medicine to treat gastrointestinal problems and has rich essential oil content. The essential oil of C. Zehntneri was analyzed by GC-MS, and its inclusion complex with β-cyclodextrin (β-CD) was characterized by both vibrational spectroscopy and differential scanning calorimetry (DSC). Estragol was the major component identified in the essential oil by the study. IR spectra indicated an interaction of β-CD with essential oil from C. zehntneri, a finding corroborated by the stability constant and scanning calorimetry. Microencapsulation within β-CD has the potential to mask sensory attributes and increase aqueous solubility of oils, thereby improving their applicability as drugs.
Resumo:
In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II) ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were ï¬tted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II) ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II) ions from wastewaters.
Resumo:
Composites strengthened with nanocellulose have been developed with the aim of improving mechanical, barrier, and thermal properties of materials. This improvement is primarily due to the nanometric size and the high crystallinity of the incorporated cellulose. Cassava starch films plasticized with glycerol and incorporated with nanocellulose from coconut fibers were developed in this study. The effect of this incorporation was studied with respect to the water activity, solubility, mechanical properties, thermal analysis, and biodegradability. The study demonstrated that the film properties can be significantly altered through the incorporation of small concentrations of nanocellulose.
Resumo:
The physicochemical properties (solubilization, structural organization and stability) of meso-tetrakis(p-methoxyphenyl)porphyrin (TMPP), a promising photosensitizer for photodynamic therapy, solubilized in polymeric micelles of tri-block copolymers PluronicTM P-123 and F-127, were studied. The formulations obtained by the solid dispersion method led to monomerization of TMPP in these copolymers. Solubility studies showed that P-123 solubilizes double the photosensitizer than F-127. The self-aggregation phenomenon was affected by the [TMPP]/[poloxamer] ratio and medium temperature. The decrease in the temperature of these systems promoted the formation of different kinds of TMPP aggregates intrinsically connected with the structural changes occurring in the micelles.
Resumo:
This work aims to (1) produce and characterize the flour obtained from two varieties of canihua, cupi and illpa-inia, and (2) evaluate the ability of these flours to form biofilms. The flours produced contain proteins, starches, lipids, organic substances containing phenol groups, and high percentages of unsaturated fatty acids. Films produced from the illpa variety presented lower water vapor permeability and larger Young’s modulus values than the films formed from the cupi variety. Both films were yellowish and displayed a high light blocking ability (as compared with polyethylene films), which can be attributed to the presence of phenolic compounds. Furthermore, they showed lesser solubility and water permeability than other polysaccharide films, which may be the result of the higher protein (12%–13.8%) and lipid (11%) contents in canihua flours, as well as the formation of a larger number of S–S bonds. On the other hand, these films presented a single vitreous transition temperature at low temperatures (< 0 °C), crystallization of the A and Vh types, and an additional diffraction peak at 2 = 7.5º, ascribed to the presence of essential fatty acids in canihua flour. Canihua flour can form films with adequate properties and shows promise for potential applications in food packaging, because it acts as a good barrier to incident ultraviolet light.
Resumo:
C18 chemically bonded sorbents have been the main materials used in solid phase extraction (SPE). However, due their high hydrophobicity some hydrophobic solutes are strongly retained leading to the consumption of larger quantities of organic solvent for efficient recoveries. This work presents a sorbent with lower hydrophobicity but similar selectivity to the C18 sorbent, prepared by thermal immobilization of poly(dimethylsiloxane-co-alkylmethylsiloxane) (PDAS) on silica. PDAS has organic chains with methyl groups alternating with octadecyl or hexadecyl groups in its monomeric unities. For the Si(PDAS) sorbent presented, the polymeric layer was physically adsorbed on the silica surface with 12% carbon load. Although the coating of silica with the polymeric layer was incomplete, the PDAS provided better protection for the silica surface groups, promoting mostly hydrophobic interactions between analytes and the sorbent. Sorption isotherm studies revealed that the retention of hydrophobic solutes on Si(PDAS) was less intense than on conventional sorbents, confirming the lower hydrophobicity of the lab-made sorbent. Additional advantages of Si(PDAS) include simplicity and low cost of preparation, making this material a potential sorbent for the analysis of highly hydrophobic solutes.
Resumo:
Indole-based receptors such as biindole, carbazole, and indolocarbazole are regarded as some of the most favorable anion receptors in molecular recognition. This is because indole groups possess N–H groups as hydrogen-bonding donors. The introduction of amide groups in the indole framework can induce strong binding properties and good water solubility. In this study, we designed and synthesized a series of N-(indol-3-ylglyoxylyl)benzylamine derivatives as novel and simple anion receptors. The receptors derived by aryl and aliphatic amines can selectively recognize F– based on a color change from colorless-to-yellow in DMSO. The receptors derived by hydrazine hydrate can recognize F–, AcO–, and H2PO4– by similar color changes in DMSO and can even enable the selective recognition of F– in a DMSO–H2O binary solution by the naked eye. Spectrographic data indicate that complexes are formed between receptors and anions through multiple hydrogen-bonding interactions in dual solutions.
Resumo:
Intermolecular forces are a useful concept that can explain the attraction between particulate matter as well as numerous phenomena in our lives such as viscosity, solubility, drug interactions, and dyeing of fibers. However, studies show that students have difficulty understanding this important concept, which has led us to develop a free educational software in English and Portuguese. The software can be used interactively by teachers and students, thus facilitating better understanding. Professors and students, both graduate and undergraduate, were questioned about the software quality and its intuitiveness of use, facility of navigation, and pedagogical application using a Likert scale. The results led to the conclusion that the developed computer application can be characterized as an auxiliary tool to assist teachers in their lectures and students in their learning process of intermolecular forces.
Resumo:
Hydrophilic interaction liquid chromatography (HILIC) has been gaining increased attention for its effective separation of highly polar compounds, which include carbohydrates, amino acids, pharmaceutical compounds, proteins, glycoproteins, nucleosides, etc. Polar compounds are usually poorly retained on reverse-phase liquid chromatography (RP-HPLC) columns or have poor solubility in the apolar mobile phase of normal-phase high performance liquid chromatography (NP-HPLC). Since HILIC uses organic solvents such as ACN or MeOH ( > 70%), also used in RP-HPLC and polar stationary phases similar to NP-HPLC (bare silica, diol, amino, amide, saccharide, zwitterionic stationary phases, etc.), it represents a hybrid of the two separation modes. The high organic content in the MP leads to good compatibility with mass spectrometry (MS), increasing the detectivity. This review describes the fundamentals of HILIC and highlights some interesting applications.
Resumo:
The ligand di-2-pyridyl ketone benzoylhydrazone (DPKBH) is widely used for the determination of transition metal ions in environmental samples. Due to its low solubility in water it is used in aqueous-ethanol (1:1) solvent and for higher sensitivity the pH must be properly adjusted. The properties of DPKBH solutions must be known at different ethanol-water percentages in order to achieve higher sensitivity and/or selectivity for metal analysis. The acid-base behavior of this reagent in aqueous-ethanol solvent and the dissociation/ionization constants (pK1 and pK2) of DPKBH have been determined in different aqueous-ethanol solvent mixtures (10, 20, 30 and 50 % V/V of ethanol) from potentiometric titrations at 25.0 ± 0.1° C. As the amount of ethanol increases from 10 to 30% the pK1 and pK2 values increased, but they decreased in 50% of the organic solvent. The results are correlated with the medium composition and its effects.
Resumo:
The complexes of 2,6-dimethoxybenzoic acid anion with ions of Co(II), Ni(II), and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies, and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have following colours: pink for Co(II), green for Ni(II), and blue for Cu(II) compounds. The carboxylate group binds as monodentate, and bidentate bridging and chelating ligands. On heating in air to 1173 K the complexes decompose in four, three or two steps. At first, they dehydrate in one or two steps to anhydrous salts, that next decompose to oxides of the respective metals. The solubility of the investigated dimethoxybenzoates in water at 293 K is of the order of 10-2 mol/dm3. Their magnetic moments were determined in the temperature range of 76-303 K. The results reveal the compounds of Co(II) and Ni(II) to be high-spin complexes and that of Cu(II) to form dimer.
Resumo:
An activated carbon was obtained by chemical activation with phosphoric acid, CM, from a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL-1, CMox2 and CMox5 nitric acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb2+ adsorption isotherms were determined by immersing activated carbons in aqueous solution. The surface area values of the adsorbents and total pore volume were approximately 560 m².g-1 and 0.36 cm³g-1, respectively. As regards chemical characteristics, activated carbons had higher acid sites content, 0.92-2.42 meq g-1, than basic sites, 0.63-0.12 meq g-1. pH values were between 7.4 and 4.5 at the point of zero charge, pH PZC. The adsorbed quantity of Pb2+ and the immersion enthalpy in solution of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7 mgg-1 and 27.6 Jg-1 respectively. Pb2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that showed the highest content of total acid sites on the surface.
Resumo:
The inhibition of the corrosion of mild steel in 2M hydrochloric acid solutions by Pyridoxol hydrochloride (PXO) has been studied using weight loss and hydrogen evolution techniques. The inhibitor (PXO) exhibited highest inhibition efficiency of 71.93% at the highest inhibitor concentration of 1.0 x 10-2M investigated and a temperature of 303K from weight loss result. Also, inhibition was found to increase with increasing concentration of the inhibitor and decreasing temperature. A first order type of mechanism has been deduced from the kinetic treatment of the weight loss results and the process of inhibition attributed to physical adsorption. The results obtained from the two techniques show that pyridoxol hydrochloride could serve as an effective inhibitor of the corrosion of mild steel in HCl acid solution. The compound obeys the Langmuir adsorption isotherm equation.
Resumo:
The complexes of silver(I) with 2,3-, 2,4-, 2,6-, 3,4-, 3,5-dimethoxy-, and 2,3,4- and 3,4,5-trimethoxybenzoic acid anions have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric and X-ray studies. Their solubility in water has been also determined at 293K. All analysed complexes were found to be crystalline, anhydrous compounds with low symmetry. The carboxylate groups act as bidentate or monodentate ligands. The thermal stability of compounds has been examined in air in temperature range of 293-1173K. The analysed complexes were found to be stable at room temperature and their solubilities in water at 293K to be in the order of 10-4 mol.dm-3.