908 resultados para Solar
Resumo:
The European Solar Engineering School ESES is a one-year masters program that started in 1999 at the Solar Energy Research Center SERC, Dalarna University College. It has been growing in popularity over the years, with over 20 students in the current year. Approximately half the students come from Europe, the rest coming from all over the globe. This paper described the contents and experiences from seven years of running the programme and the plans for adapting the programme to the Bologna process. The majority of the students from ESES have found work in the solar industry, energy industry or taken up PhD positions. An alumni group has been started that actively gives support to past, present and potential future students.
Resumo:
In Sweden solar irradiation and space heating loads are unevenly distributed over the year. Domestic hot water loads may be nearly constant. Test results on solar collector performance are often reported as yearly output of a certain collector at fixed temperatures, e g 25, 50 and 75 C. These data are not suitable for dimensioning of solar systems, because the actual performance of the collector depends heavily on solar fraction and load distribution over the year.At higher latitudes it is difficult to attain high solar fractions for buildings, due to overheating in summer and small marginal output for added collector area. Solar collectors with internal reflectors offer possibilities to evade overheating problems and deliver more energy at seasons when the load is higher. There are methods for estimating the yearly angular irradiation distribution, but there is a lack of methods for describing the load and the storage in such a way as to enable optical design of season and load adapted collectors.This report describes two methods for estimation of solar system performance with relevance for season and load adaption. Results regarding attainable solar fractions as a function of collector features, load profiles, load levels and storage characteristics are reported. The first method uses monthly collector output data at fixed temperatures from the simulation program MINSUN for estimating solar fractions for different load profiles and load levels. The load level is defined as estimated yearly collector output at constant collector temperature divided be yearly load. This table may examplify the results:CollectorLoadLoadSolar Improvementtypeprofile levelfractionover flat plateFlat plateDHW 75 %59 %Load adaptedDHW 75 %66 %12 %Flat plateSpace heating 50 %22 %Load adaptedSpace heating 50 %28 %29 %The second method utilises simulations with one-hour timesteps for collectors connected to a simplified storage and a variable load. Collector output, optical and thermal losses, heat overproduction, load level and storage temperature are presented as functions of solar incidence angles. These data are suitable for optical design of load adapted solar collectors. Results for a Stockholm location indicate that a solar combisystem with a solar fraction around 30 % should have collectors that reduce heat production at solar heights above 30 degrees and have optimum efficiency for solar heights between 8 and 30 degrees.
Resumo:
Irradiation distribution functions based on the yearly collectible energy have been derived for two locations; Sydney, Australia which represents a mid-latitude site and Stockholm, Sweden, which represents a high latitude site. The strong skewing of collectible energy toward summer solstice at high latitudes dictates optimal collector tilt angles considerably below the polar mount. The lack of winter radiation at high latitudes indicates that the optimal acceptance angle for a stationary EW-aligned concentrator decreases as latitude increases. Furthermore concentrator design should be highly asymmetric at high latitudes.
Resumo:
Within the frame of the project REBUS, "Competitive solar heating systems for residential buildings", which is financed by Nordic Energy Research, a new type of compact solar combisystem with high degree of prefabrication was developed. A hydraulic and control concept was designed with the goal to get highest system efficiency for use with either a condensing natural gas boiler or a pellet boiler. Especially when using the potential of high peak power of modern condensing natural gas boilers, a new operation strategy of a natural gas boiler/solar combisystem can increase the energy savings of a small solar combisystem by about 80% compared to conventional operation strategies.
Resumo:
Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.
Resumo:
With a suitable gas filling used between cover glass and absorber in a flat plate solar collector, it is possible achieving better thermal performance at the same time as the distance betweenabsorber and glass can be reduced. Though, even if there is no vacuum inside the box, there will be potential risks for exhaustion due to stresses depending on the gas volume varies as the temperature varies. This study found out that it is possible build such a collector with less material in the absorber and the tubes and still getting better performance, without risks for exhaustion.
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.
Resumo:
Dagens kombisolvärmesystem för enfamiljshus har i storleksordningen 10 m2 solfångare och kan täcka i runda tal 10 ? 30 % av det årliga värmebehovet. Ökar man solfångarytan för att öka solvärmetäckningsgraden uppstår det vanligtvis en överproduktion av värme sommartid viket kan orsaka problem i form av termisk utmattning av material, att material förstörs eller att säkerhetsventiler utlöses med driftsstopp som följd. Vidare förkortas glykolens livslängd radikalt och detta kan ge följdskador såsom korrosion, beläggningar i rören och t o m igensättning av systemet. Ett sätt att undvika problemen med överhettning i solvärmesystem med hög täckningsgrad är att använda lastanpassade solfångare. Med detta menas solfångare som har en verkningsgrad som är beroende av solhöjden och varierar över året. Verkningsgraden är hög när värmelasten är hög (vanligtvis sen höst, vinter och tidig vår) medan verkningsgraden är låg då värmelasten är låg (vanligtvis sen vår, sommar och tidig höst). I denna rapport visas att det är möjligt att bygga lastanpassade solfångarsystem med hög täckningsgrad för enfamiljshus med solfångarytor som täcker hela villatak (>= 40 m2), utan att den termiska påfrestningen på systemet blir större än för vanliga solvärmesystem med 10 m2 plana solfångare. Detta kan göras med samma systemkomponenter som finns i system med plana solfångare. De lastanpassade solfångarna levererar ungefär samma energimängd per m2 som plana solfångare, men de bör kunna bli billigare, på grund av lägre materialkostnad. Det finns även en potential att konstruera lastanpassade solvärmesystem med begränsad stagnationstemperatur, vilket kan möjliggöra användandet av billigare material. En och samma solfångartyp är lämplig för såväl stora som små system och för olika takvinklar. I rapporten redovisas optimerade solfångargeometrier för lastanpassade solvärmesystem, geometrier och optiska egenskaper för praktiskt möjliga solfångare samt beräkningar av förväntat årsutbyte, stagnationstemperaturer, stagnationstider och kostnader. Testresultat för två prototyper av lastanpassade solfångare presenteras. Optimeringsalgoritmer för design av optiken för lastanpassade solfångare i system samt ett ray-tracingverktyg och snabba men ändå tillräckligt noggranna simuleringsverktyg har utvecklats.
Resumo:
The memebers of IEA (International Energy Agency) Task 14 (Advaced Active Solar Systems) met in Rome during January 1993. The latest developments in several countries were presented and discussed during this meeting. This report describes briefly the recent work carried out on small scale systems in the Domestic Hot Water (DHW) working group of Task 14, as reported by the representatives from Canada, Denmark, Germany, Holland and Switzerland. Klaus Lorenz, SERC, attended the meeting as observer and presented our work on small-tube heat exchangers. Several participants expressed their interest. A summary of his presentation is included in this report.
Resumo:
Participation as observer at the meeting of Task 14 of IEA's Solar Heating and Cooling Projects held in Hameln, Germany has led to greater understanding of interesting developments underway in several countries. This will be of use during the development of small scale systems suitable for Swedish conditions. A summary of the work carried out by the working groups within Task 14 is given, with emphasis on the Domestic Hot Water group. Experiences of low-flow systems from several countries are related, and the conclusion is drawn that the maximum theoretical possible increase in performance of 20% has not been achieved due to poor heat exchangers and poor stratification in the storage tanks. Positive developments in connecting tubes and pumps is noted. Further participation as observer in Task 14 meetings is desired, and is looked on favourably by the members of the group. Another conclusion is that SERC should carry on with work on Swedish storage tanks, with emphasis on better stratification and heat exchangers, and possible modelling of system components. Finally a German Do-it-Vourself kit is described and judged in comparison with prefabricated models and Swedish Do-it-Yourself kits.
Resumo:
Program SOLVEJ är ett användarvänligt program som visar solens vandring över himlavalvet vid upp till fem valfria datum och vid valfri ort. Programmet är utvecklat av två skäl. För det första, att demonstreras för en intresserad allmänhet som del av vandringsutställning om solenergi, vilken är initierad och utarbetad av SERC. För det andra, att användas av solenerglintressenter för att snabbt få en uppfattning om solinstrålningen på en ort vid olika tidpunkter på året.Indata till programmet ges från tangentbordet. Som svar på frågor skrivs för vilken ort diagrammet skall gälla, max fem datum, ortens latitud och longitud, som anges positiv i västlig riktning, samt tidszonen. Varje uppgift avslutas med tryck på tangenten ENTER. Programmet kommer nu att rita ett koordinatsystem på skärmen. Första axeln visar vädersträcken, norr, öster, söder, väster och norr, varje delstreck utgör 10 grader. För södra halvklotet byter norr och söder plats. Andra axeln visar höjden över horisonten i grader, 0 till 90 grader och 10 grader för varje delstreck. Efter några sekunder ritas diagrammet upp med solhöjden som funktion av väderstrecket och varje hel timme markerad. Se fig. 1-4. Slutligen frågas efter om diagrammet skall ritas ut på printer. SOLVEJ avbrytes med att trycka CTRL+BREAK.SOLVEJ är skrivet i Quick-BASIC (se App. 1) och leveras både som källkod och körklar version. Lämplig dator är IBM-kompatibel AT med EGA- eller VGA-skärmkort (ej Herkules Lämplig printer är IBM Proprinter eller liknande matrisskrivare, kopplad till LPT1 på kommunikationskortet.Till grund för beräkningarna har använts artikeln On Calculating the Position of the Sun, publicerad i nr. 1 1988 av The International Journal of Ambient Energy. Fem empiriska ekvationer beträffande beräkningar av solens position har studerats för att undersöka deras tillförlitlighet. Felaktigheter på fem grader eller mer kan uppträda om man använder sig av de enkla ekvationer som kan hittas solenergi-böcker och som inte kräver tillgång till dator. FORTRAN-rutinen SUNAE2 (se App. 2) beräknar solpositionen med noggrannast kända metod. Program SOLVEJ är en utveckling av SUNAE2.
Resumo:
The ISES Solar World Congress Clean and Safe Energy Forever was held in Kobe, Japan, September 4-8, 1989. Short impressions from the conference and the simultaneous exhibition are given. On our (separate) ways to Kobe, Eriksson visited institutions in the Bombay, India area, and Broman one institution in Islamabad, Pakistan. Accounts of these visits are given. Three papers presented in Kobe are included in an Appendix.
Resumo:
The purpose of my tour to Czechoslovakia was to participate the Third International Conference Applied Optics in Solar Energy, which was held in Prague, Octoher 2-6, 1989, and then visit some scientific institutes and solar collector plants as guest of the Czechoslovakian Academy of Science. This was made possihle hy an exchange researcher grant from the Royal Swedish Academy of Engineering Sciences.