997 resultados para Soil layer
Resumo:
No-tillage systems provide soil changes that affect nutrient dynamics, hence, changing rates and forms of fertilizer application. This study aimed to evaluate the effect of phosphorus (P) and modes of nitrogen (N) and P application in corn under long-term no-tillage in a clayey Oxisol. Two experiments were carried out in the same experimental area and in the same year, in a randomized blocks design with four replications. In experiment I, the treatments consisted of five doses of phosphorus (0, 40, 80, 120 and 160 kg ha-1 of P2O5) applied in the sowing furrow. In experiment II, the treatments consisted of the N and P application modes (topdressing, in the sowing furrow and control - without N and P). Experiment I evaluated the root length, P uptake and grain yield and, the Experiment II, the firing height and yield. The P rates provided linear increases in root length in the 0-10 cm layer, P uptake and grain production. The different modes of application provided differences in the firing height and corn yield. The control treatment (0 kg ha-1 of N and P) provided the highest firing height, superior than those of topdressing and application in the furrow, which were not significantly different. The topdress application of N and P provided an increase in corn yield that exceeded 16 and 42% of the application in the furrow and the control, respectively. Thus, the results confirmed that increasing rates of P2O5, in soil with high initial P content, influence positively corn production factors, but with little significant responses, and the topdress application of N and P on soil with high P content, without water restriction, provided increased grain yield in relation to the application in the furrow.
Resumo:
The aim of the present study was to evaluate water consumption, use efficiency and yield components of sunflower variety Embrapa 122 V/2000 cultivated in two types of soil (Fluvissol and Haplic Luvisol) subjected to increasing doses of cattle manure. The experiment was carried out in a greenhouse at Universidade Estadual da Paraíba. The experimental design was completely randomized in a factorial scheme. The irrigation was performed every other day, replacing the water absorbed by the plants. The water consumption and the use efficiency were evaluated, being the use efficiency determined by the ratio of the total dry mass of sunflower and the amount of water used to produce it in each treatment. Plants were harvested at 95 days after sowing when the following parameters were evaluated: number of seeds per plant, weight of seeds per plant, weight of 1000 seeds and the outer diameter of the capitulum (head). The results showed that the sunflower was positively affected by cattle manure application, increasing the production components and the water use efficiency, regardless of the type of soil. Excepting for the 1000 seeds weight and the water use efficiency, the type of soil affected significantly the water use, the number and weight of seeds per plant. The plants cultivated in Haplic Luvisol had a better performance.
Resumo:
The socioeconomic importance of sugar cane in Brazil is unquestionable because it is the raw material for the production of ethanol and sugar. The accurate spatial intervention in the management of the crop, resulting zones of soil management, increases productivity as well as its agricultural yields. The spatial and Person's correlations between sugarcane attributes and physico-chemical attributes of a Typic Tropustalf were studied in the growing season of 2009, in Suzanápolis, State of São Paulo, Brazil (20°28'10'' S lat.; 50°49'20'' W long.), in order to obtain the one that best correlates with agricultural productivity. Thus, the geostatistical grid with 120 sampling points was installed to soil and data collection in a plot of 14.6 ha with second crop sugarcane. Due to their substantial and excellent linear and spatial correlations with the productivity of the sugarcane, the population of plants and the organic matter content of the soil, by evidencing substantial correlations, linear and spatial, with the productivity of sugarcane, were indicators of management zones strongly attached to such productivity.
Resumo:
Nowadays despite improvements in usability and intuitiveness users have to adapt to the proposed systems to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, and fulfill system's specifications. This paper proposes an approach to improve this situation enabling graphical user interface redefinition through virtualization and computer vision with the aim of increasing the system's usability. To achieve this goal the approach is based on enriched task models, virtualization and picture-driven computing.
Resumo:
Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.
Resumo:
Studies on the use of silicate correctives in agriculture show that they have great potential to improve soil chemical characteristics, however, little information is available on the reactivity rates of their particle-size fractions. This study investigated whether the reactivity rates obtained experimentally could be considered in the calculation of ECC (effective calcium carbonate) for soil liming, promoting adequate development of alfalfa plants. Six treatments were evaluated in the experiment, consisting of two slag types applied in two rates. The experimental ECC was used to calculate one of the rates and the ECC determined in the laboratory was used to calculate the other. Rates of limestone and wollastonite were based on the ECC determined in laboratory. The rates of each soil acidity corretive were calculated to increase the base saturation to 80%. The treatments were applied to a Rhodic Hapludox and an Alfisol Ferrudalfs. The methods for ECC determination established for lime can be applied to steel slag. The application of slag corrected soil acidity with consequent accumulation of Ca, P, and Si in alfalfa, favoring DM production.
Resumo:
The use of cover crops in no-tillage systems (NTS) can significantly improve the soil's fertility. Thus, a study was performed to evaluate changes in chemical properties of soil caused by cover crops in a no-tillage system. The field experiment consisted of the following crop rotation: cover crops/rice/cover crops/rice. The experimental design was in randomized blocks with three replications. Treatments consisted of four cover crops (Brachiaria brizantha(Hochst. ex A. Rich.) Stapf. cv. Marandu, Brachiaria ruziziensis R. Germ. and C.M. Evrard, Panicum maximum Jacq. cv. Colonião, and Pennisetum glaucum(L.) R. Br. cv. BN-2) and fallow (control treatment). Soil samples were collected at the beginning of the summer crop in Oct 2007, Oct 2008 and Oct 2009 at 0-5 cm soil depth. The use of cover crops provided for a significant increase in the level of nutrients, soil organic matter, cation exchange capacity, and base saturation in the soil. Soil fertility improved from the first to second year with the growing of cover crops. The soil under cover crops P. glaucum, B. ruziziensis, and B. brizantha showed higher fertility than the area under fallow.
Resumo:
ABSTRACT Soybean cultivation is increasing rapidly in the region of Alto Vale do Itajaí, State of Santa Catarina, where there is a predominance of silt soils. The objective of this work was to evaluate the content of primary macronutrients in shoots and shoot and root vegetative growth of soybean (Glicine max L. Merrill) grown in a silt-loam soil under different compactation densities and moisture levels. A randomized block design in a 4x4 factorial arrangement was used, with four compactation densities: 1.00; 1.20; 1.40 and 1.60 Mg m-3, and four soil moisture levels: 0.130; 0.160; 0.190 and 0.220 kg kg-1 and four replications. Each pot consisted of the overlapping of three 150-mm PVC rings, where soil was maintained in the higher and lower part of the pot with a density of 1.00 Mg m-3 and in the intermediate ring, the compactation densities were increased. Values of soil density higher than 120 Mg m-3 negatively affected N, P and K uptake by soybean plants, as well as the plant mass of the shoots and roots. The higher levels of soil moisture reduced the compaction effect and promoted better absorption of P and K.
Resumo:
ABSTRACT In areas cultivated under no-tillage system, the availability of phosphorus (P) can be raised by means of the gradual corrective fertilization, applying phosphorus into sowing furrows at doses higher than those required by the crops. The objective of this work was to establish the amount of P to be applied in soybean crop to increase content of P to pre-established values at the depth of 0.0 to 0.10 m. An experiment was carried out on a clayey Haplorthox soil with a randomized block experimental design distributed in split-split plot, with four replications. Two soybean crop systems (single or intercropped with Panicum maximum Jaca cv. Aruana) were evaluated in the plots. In addition, it was evaluated four P levels (0, 60, 120 and 180 kg ha-1 P2O5) applied in the first year in the split plots; and four P levels (0, 30, 60 and 90 kg ha-1 P2O5) applied in the two subsequent crops in the split-split plot. Contents of P were extracted by Mehlich-1 and Anion Exchange Resin methods from soil samples collected in the split-split plot. It was found that it is necessary to apply 19.4 or 11.1 kg ha-1 of P2O5, via triple superphosphate as source, to increase 1 mg dm-3 of P extracted by Mehlich-1 or Resin, respectively, in the 0.0 to 0.10 m layer of depth. The soil drain P character decreases as the amount of this nutrient supplied in the previous crops is increased.
Resumo:
The majority of worldwide structures use concrete as its main material. This happens because concrete is economically feasible, due to its undemanding production technology and case Of use. However, it is widely recognized that concrete production has a strong environmental impact in the planet. Natural aggregates use is one of the most important problems of concrete production nowadays, since they are obtained from limited, and in some countries scarce, resources. In Portugal, although there are enough stone quarries to cover coarse aggregates needs for several more years, Supplies of fine aggregates are becoming scarcer, especially in the northern part of the country. On the other hand, as concrete structures' life cycle comes to an end, an urgent need emerges to establish technically and economically viable solutions for demolition debris, other than for use as road base and quarry fill. This paper presents a partial life cycle assessment (LCA) of concrete made with fine recycled concrete aggregates performed with EcoConcrete tool. EcoConcrete is a tailor-made, interactive, learning and communications tool promoted by the Joint Project Group (JPG) on the LCA of concrete, to qualify and quantify the overall environment impact of concrete products. It consists of an interactive Excel-spreadsheet in which several environmental inputs (material quantities, distances from origin to production Site, production processes) and outputs (material, energy, emissions to air, water, soil or waste) are collected in a life cycle inventory, and are then processed to determine the environmental impact (assessment) of the analysed concrete, in terms of ozone layer depletion, smog or "greenhouse" effect.
Resumo:
We report on structural, electronic, and optical properties of boron-doped, hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) at a substrate temperature of 150 degrees C. Film properties were studied as a function of trimethylboron-to-silane ratio and film thickness. The absorption loss of 25% at a wavelength of 400 nm was measured for the 20 nm thick films on glass and glass/ZnO:Al substrates. By employing the p(+) nc-Si:H as a window layer, complete p-i-n structures were fabricated and characterized. Low leakage current and enhanced sensitivity in the UV/blue range were achieved by incorporating an a-SiC:H buffer between the p- and i-layers.
Resumo:
Characteristics of tunable wavelength filters based on a-SiC:H multi-layered stacked cells are studied both theoretically and experimentally. Results show that the light-activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal. The sensor is a bias wavelength current-controlled device that make use of changes in the wavelength of the background to control the power delivered to the load, acting a photonic active filter. Its gain depends on the background wavelength that controls the electrical field profile across the device.
Resumo:
Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ◦C has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ◦C has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ◦C has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ◦C substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%.