889 resultados para Social function of property and the company


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International System of Units, the SI, is built upon seven base quantities and seven base units, as summarized in the table below. Although most of these are familiar to all scientists, the quantity “amount of substance” and its unit “mole” are less familiar and are mainly used by chemists.1 In the chemistry community, the unit “mole” is familiar, but the name of the corresponding quantity “amount of substance” is not so familiar, and the concept is still a source of difficulty for many students. This article reviews and clarifies these two concepts2 and discusses the definition of the unit “mole” and its possible revision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been considerable discussion about the merits of redefining four of the base units of the SI, including the mole. In this paper, the options for implementing a new definition for the mole based on a fixed value for the Avogadro constant are discussed. They are placed in the context of the macroscopic nature of the quantity amount of substance and the opportunity to introduce a system for molar and atomic masses with unchanged values and consistent relative uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution Fourier transform infrared spectrum of methyleneimine, HN=CH2, has been obtained in the gas phase in the region 700 to 1300 cm−1. The rovibrational line intensities of the three lowest fundamentals ν7 (A′), ν8 (A″), and ν9 (A″) have been simulated including all Coriolis interactions between the three bands, and by fitting the observed spectrum the relative signs and magnitudes of the vibrational transition moments have been determined. All of the available spectroscopic data have been used to determine the harmonic force field of methyleneimine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews Bayesian procedures for phase 1 dose-escalation studies and compares different dose schedules and cohort sizes. The methodology described is motivated by the situation of phase 1 dose-escalation studiesin oncology, that is, a single dose administered to each patient, with a single binary response ("toxicity"' or "no toxicity") observed. It is likely that a wider range of applications of the methodology is possible. In this paper, results from 10000-fold simulation runs conducted using the software package Bayesian ADEPT are presented. Four designs were compared under six scenarios. The simulation results indicate that there are slight advantages of having more dose levels and smaller cohort sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absorption cross-sections of Cl2O6 and Cl2O4 have been obtained using a fast flow reactor with a diode array spectrometer (DAS) detection system. The absorption cross-sections at the wavelengths of maximum absorption (lambda(max)) determined in this study are those of Cl2O6: (1.47 +/- 0.15) x 10(-17) cm(2) molecule(-1), at lambda(max) = 276 nm and T = 298 K; and Cl2O4: (9.0 +/- 2.0) x 10(-19) cm(2) molecule(-1), at lambda(max) = 234 nm and T = 298 K. Errors quoted are two standard deviations together with estimates of the systematic error. The shapes of the absorption spectra were obtained over the wavelength range 200-450 nm for Cl2O6 and 200-350 nm for Cl2O4, and were normalized to the absolute cross-sections obtained at lambda(max) for each oxide, and are presented at 1 nm intervals. These data are discussed in relation to previous measurements. The reaction of O with OCIO has been investigated with the objective of observing transient spectroscopic absorptions. A transient absorption was seen, and the possibility is explored of identifying the species with the elusive sym-ClO3 or ClO4, both of which have been characterized in matrices, but not in the gas-phase. The photolysis of OCIO was also re-examined, with emphasis being placed on the products of reaction. UV absorptions attributable to one of the isomers of the ClO dimer, chloryl chloride (ClClO2) were observed; some Cl2O4 was also found at long photolysis times, when much of the ClClO2 had itself been photolysed. We suggest that reports of Cl2O6 formation in previous studies could be a consequence of a mistaken identification. At low temperatures, the photolysis of OCIO leads to the formation of Cl2O3 as a result of the addition of the ClO primary product to OCIO. ClClO2 also appears to be one product of the reaction between O-3 and OCIO, especially when the reaction occurs under explosive conditions. We studied the kinetics of the non-explosive process using a stopped-flow technique, and suggest a value for the room-temperature rate coefficient of (4.6 +/- 0.9) x 10(-19) cm(3) molecule(-1) s(-1) (limit quoted is 2sigma random errors). The photochemical and thermal decomposition of Cl2O6 is described in this paper. For photolysis at k = 254 nm, the removal of Cl2O6 is not accompanied by the build up of any other strong absorber. The implications of the results are either that the photolysis of Cl2O6 produces Cl-2 directly, or that the initial photofragments are converted rapidly to Cl-2. In the thermal decomposition of Cl2O6, Cl2O4 was shown to be a product of reaction, although not necessarily the major one. The kinetics of decomposition were investigated using the stopped-flow technique. At relatively high [OCIO] present in the system, the decay kinetics obeyed a first-order law, with a limiting first-order rate coefficient of 0.002 s(-1). (C) 2004 Elsevier B.V. All rights reserved.