961 resultados para Smith, James, fl. 1841-ca. 1861.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present modern B/Ca core-top calibrations for the epifaunal benthic foraminifer Nuttallides umbonifera and the infaunal Oridorsalis umbonatus to test whether B/Ca values in these species can be used for the reconstruction of paleo-D[[CO3]2-]. O. umbonatus originated in the Late Cretaceous and remains extant, whereas N. umbonifera originated in the Eocene and is the closest extant relative to Nuttallides truempyi, which ranges from the Late Cretaceous through the Eocene. We measured B/Ca in both species in 35 Holocene sediment samples from the Atlantic, Pacific and Southern Oceans. B/Ca values in epifaunal N. umbonifera (~ 85-175 µmol/mol) are consistently lower than values reported for epifaunal Cibicidoides (Cibicides) wuellerstorfi (130-250 µmol/mol), though the sensitivity of D[[CO3]2-] on B/Ca in N. umbonifera (1.23 ± 0.15) is similar to that in C. wuellerstorfi (1.14 ± 0.048). In addition, we show that B/Ca values of paired N. umbonifera and its extinct ancestor, N. truempyi, from Eocene cores are indistinguishable within error. In contrast, both the B/Ca (35-85 µmol/mol) and sensitivity to D[[CO3]2-] (0.29 ± 0.20) of core-top O. umbonatus are considerably lower (as in other infaunal species), and this offset extends into the Paleocene. Thus the B/Ca of N. umbonifera and its ancestor can be used to reconstruct bottom water D[[CO3]2?], whereas O. umbonatus B/Ca appears to be buffered by porewater [[CO3]2-] and suited for constraining long-term drift in seawater B/Ca.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and d11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater [B(OH)4]?/[HCO3]? with a roughly constant partition coefficient (KD =([B/Ca]of CaCO3)/([B(OH)4]-/[HCO3]-)of seawater) of 1.48 ± 0.15 * 10**-3 (2sigma), and d11B in this species is offset below d11B of the borate in seawater by 3.38 ± 0.71 per mil (2sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 * 10**-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution d11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large d13C offset developed between mid-depth (~600 meters) and deep (>1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth d13C and O2 minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constraining the magnitude of high-latitude temperature change across the Eocene-Oligocene transition (EOT) is essential for quantifying the magnitude of Antarctic ice-sheet expansion and understanding regional climate response to this event. To this end, we constructed high-resolution stable oxygen isotope (d18O) and magnesium/calcium (Mg/Ca) records from planktic and benthic foraminifera at four Ocean Drilling Program (ODP) sites in the Southern Ocean. Planktic foraminiferal Mg/Ca records from the Kerguelen Plateau (ODP Sites 738, 744, and 748) show a consistent pattern of temperature change, indicating 2-3 °C cooling in direct conjunction with the first step of a two-step increase in benthic and planktic foraminiferal d18O values across the EOT. In contrast, benthic Mg/Ca records from Maud Rise (ODP Site 689) and the Kerguelen Plateau (ODP Site 748) do not exhibit significant temperature change. The contrasting temperature histories derived from the planktic and benthic Mg/Ca records are not reconcilable, since vertical d18O gradients remained nearly constant at all sites between 35.0 and 32.5 Ma. Based on the coherency of the planktic Mg/Ca records from the Kerguelen Plateau sites and complications with benthic Mg/Ca paleothermometry at low temperatures, the planktic Mg/Ca records are deemed the most reliable measure of Southern Ocean temperature change. We therefore interpret a uniform cooling of 2-3 °C in both deep surface (thermocline) waters and intermediate deep waters of the Southern Ocean across the EOT. Cooling of Southern Ocean surface waters across the EOT was likely propagated to the deep ocean, since deep waters were primarily sourced on the Antarctic margin throughout this time interval. Removal of the temperature component from the observed foraminiferal d18O shift indicates that seawater d18O values increased by 0.6 ± 0.15 per mil across the EOT interval, corresponding to an increase in global ice volume to a level equivalent with 60-130% modern East Antarctic ice sheet volume.