577 resultados para Slit-Nozzle
Resumo:
The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.
Resumo:
This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.
Resumo:
The literature pertaining to the key stages of spray drying has been reviewed in the context of the mathematical modelling of drier performance. A critical review is also presented of previous spray drying models. A new mathematical model has been developed for prediction of spray drier performance. This is applicable to slurries of rigid, porous crust-forming materials to predict trajectories and drying profiles for droplets with a distribution of sizes sprayed from a centrifugal pressure nozzle. The model has been validated by comparing model predictions to experimental data from a pilot-scale counter-current drier and from a full-scale co-current drier. For the latter, the computed product moisture content was within 2%, and the computed air exit temperature within 10oC of experimental data. Air flow patterns have been investigated in a 1.2m diameter transparent countercurrent spray tower by flow visualisation. Smoke was introduced into various zones within the tower to trace the direction, and gauge the intensity, of the air flow. By means of a set of variable-angle air inlet nozzles, a variety of air entry configurations was investigated. The existence of a core of high rotational and axial velocity channelling up the axis of the tower was confirmed. The stability of flow within the core was found to be strongly dependent upon the air entry arrangement. A probe was developed for the measurement of air temperature and humidity profiles. This was employed for studying evaporation of pure water drops in a 1.2m diameter pilot-scale counter-current drier. A rapid approach to the exit air properties was detected within a 1m distance from the air entry ports. Measured radial profiles were found to be virtually flat but, from the axial profiles, the existence of plug-flow, well-mixed-flow and some degree of air short-circuiting can be inferred. The model and conclusions should assist in the improved design and optimum operation of industrial spray driers.
Resumo:
A combined flow loop - jet impingement pilot plant has been used to determine mass loss rates in a mixed gas - saltwater - sand multiphase flow at impact velocities up to 70 m/s. Artificial brine with a salt content of 27 g/1 was used as liquid phase. Sand content, with grain size below 150 µ, was 2.7 g/l brine. CO at a pressure of 15 bar was used as gas phase. The impact angle between jet stream (nozzle) and sample surface was varied between 30 and 90°. Rectangular stainless steel disc samples with a size of 20 × 15 × 5 mm were used. They were mechanically ground and polished prior to testing. Damaged surfaces of specimens exposed to the high velocity multiphase flow were investigated by stereo microscopy, scanning electron microscopy (SEM) and an optical device for 3D surface measurements. Furthermore, samples were investigated by applying atomic force microscopy (AFM), magnetic force microscopy (MFM) and nanoindentation. Influence of impact velocity and impact angle on penetration rates (mass loss rates) of two CRAs (UNS S30400 and N08028) are presented. Moreover effects of chemical composition and mechanical properties are critically discussed. © 2008 by NACE International.
Resumo:
Background Evaluation of anterior chamber depth (ACD) can potentially identify those patients at risk of angle-closure glaucoma. We aimed to: compare van Herick’s limbal chamber depth (LCDvh) grades with LCDorb grades calculated from the Orbscan anterior chamber angle values; determine Smith’s technique ACD and compare to Orbscan ACD; and calculate a constant for Smith’s technique using Orbscan ACD. Methods Eighty participants free from eye disease underwent LCDvh grading, Smith’s technique ACD, and Orbscan anterior chamber angle and ACD measurement. Results LCDvh overestimated grades by a mean of 0.25 (coefficient of repeatability [CR] 1.59) compared to LCDorb. Smith’s technique (constant 1.40 and 1.31) overestimated ACD by a mean of 0.33 mm (CR 0.82) and 0.12 mm (CR 0.79) respectively, compared to Orbscan. Using linear regression, we determined a constant of 1.22 for Smith’s slit-length method. Conclusions Smith’s technique (constant 1.31) provided an ACD that is closer to that found with Orbscan compared to a constant of 1.40 or LCDvh. Our findings also suggest that Smith’s technique would produce values closer to that obtained with Orbscan by using a constant of 1.22.
Resumo:
With the competitive challenge facing business today, the need to keep cost down and quality up is a matter of survival. One way in which wire manufacturers can meet this challenge is to possess a thorough understanding of deformation, friction and lubrication during the wire drawing process, and therefore to make good decisions regarding the selection and application of lubricants as well as the die design. Friction, lubrication and die design during wire drawing thus become the subject of this study. Although theoretical and experimental investigations have been being carried out ever since the establishment of wire drawing technology, many problems remain unsolved. It is therefore necessary to conduct further research on traditional and fundamental subjects such as the mechanics of deformation, friction, lubrication and die design in wire drawing. Drawing experiments were carried out on an existing bull-block under different cross-sectional area reductions, different speeds and different lubricants. The instrumentation to measure drawing load and drawing speed was set up and connected to the wire drawing machine, together with a data acquisition system. A die box connected to the existing die holder for using dry soap lubricant was designed and tested. The experimental results in terms of drawing stress vs percentage area reduction curves under different drawing conditions were analysed and compared. The effects on drawing stress of friction, lubrication, drawing speed and pressure die nozzle are discussed. In order to determine the flow stress of the material during deformation, tensile tests were performed on an Instron universal test machine, using the wires drawn under different area reductions. A polynomial function is used to correlate the flow stress of the material with the plastic strain, on which a general computer program has been written to find out the coefficients of the stress-strain function. The residual lubricant film on the steel wire after drawing was examined both radially and longitudinally using an SEM and optical microscope. The lubricant film on the drawn wire was clearly observed. Therefore, the micro-analysis by SEM provides a way of friction and lubrication assessment in wire drawing.
Resumo:
Fluidized bed spray granulators (FBMG) are widely used in the process industry for particle size growth; a desirable feature in many products, such as granulated food and medical tablets. In this paper, the first in a series of four discussing the rate of various microscopic events occurring in FBMG, theoretical analysis coupled with CFD simulations have been used to predict granule–granule and droplet–granule collision time scales. The granule–granule collision time scale was derived from principles of kinetic theory of granular flow (KTGF). For the droplet–granule collisions, two limiting models were derived; one is for the case of fast droplet velocity, where the granule velocity is considerable lower than that of the droplet (ballistic model) and another for the case where the droplet is traveling with a velocity similar to the velocity of the granules. The hydrodynamic parameters used in the solution of the above models were obtained from the CFD predictions for a typical spray fluidized bed system. The granule–granule collision rate within an identified spray zone was found to fall approximately within the range of 10-2–10-3 s, while the droplet–granule collision was found to be much faster, however, slowing rapidly (exponentially) when moving away from the spray nozzle tip. Such information, together with the time scale analysis of droplet solidification and spreading, discussed in part II and III of this study, are useful for probability analysis of the various event occurring during a granulation process, which then lead to be better qualitative and, in part IV, quantitative prediction of the aggregation rate.
Resumo:
Introduction: Macular oedema is not directly visible on digital photographs used in screening. Photographic surrogate markers are used to detect patients who may have macular oedema. Evidence suggests that only around 10% of patients with these surrogate markers referred to an ophthalmologist have macular oedema when examined by slit-lamp biomicroscopy. Purpose: The purpose of this audit was to determine how many patients with surrogate markers were truly identified by optical coherence tomography (OCT) as having macular oedema. Method: Data were collected from patients attending digital diabetic retinopathy screening. Patients who presented with surrogate markers for macular oedema also had an OCT scan. The fast macula scan on the Stratus OCT was used and an ophthalmologist reviewed the scans to determine whether macular oedema was present. Results: Out of 66 patients with maculopathy defined as haemorrhages or microaneurysms within one optic disc diameter (DD) of the fovea and visual acuity (VA) worse than 6/9 11 (17%) showed thickening on the OCT, only 4 (6%) had macular oedema. None required laser. Out of 155 patients with maculopathy defined as any exudate within one DD of the fovea or circinate within two DD 45 (29%) showed thickening on the OCT of these 27% required laser. Conclusion: OCT is a useful tool in screening to help identify those who need a true referral to ophthalmology for maculopathy. If exudate is present the chance of having macular oedema and requiring laser treatment is greater than the presence of microaneurysms within one DD and reduced VA.
Resumo:
DESIGN. Retrospective analysis PURPOSE. Macular oedema is not directly visible on two dimensional digital photographs such that surrogate markers need to be used. In the English National Screening Programme these are exudate within one optic disc diameter (DD) of the fovea, group of exudates within two DD of the fovea and haemorrhages or microaneurysms (HMA) within one DD of the fovea with best corrected visual acuity (VA) worse than 6/9. All patients who present with any of these surrogate markers at screening are referred to an ophthalmology clinic for slit lamp examination. The purpose of this audit was to determine how many patients with positive maculopathy diagnosis on photography were truly identified by optical coherence tomography (OCT) with macular oedema. METHODS. Data was collected from patients attending digital diabetic retinopathy screening. Patients who presented with surrogate markers for macular oedema also had an OCT scan. The fast macula scan on the Stratus OCT was used and an ophthalmologist reviewed the scans to determine whether macular oedema was present. RESULTS. Maculopathy by exudates: Of 155 patients 45 (29%) showed thickening on the OCT of these 12 required laser. Those who also had pre-proliferative retinopathy (n=20) were more likely to have macular oedema (75%) than those with background diabetic retinopathy. Maculopathy by HMA and VA worse than 6/9: Of 66 patients 11 (16.7%) showed thickening on the OCT. 5 (7.6%) of these had macular oedema, 5 (7.6%) epi-retinal membrane, and 1 (1.5%) age related macular degeneration. None of these patients required laser. CONCLUSIONS. The likelihood of the presence of macular oedema and requiring laser treatment is greater with macular exudation than HMA within one DD and reduced VA. Overall the surrogate markers used show low specificity for macular oedema, however combining OCT with photography does identify those with macular oedema who require a true referral for an ophthalmological slit lamp examination.
Resumo:
PURPOSE: To validate a new miniaturised, open-field wavefront device which has been developed with the capacity to be attached to an ophthalmic surgical microscope or slit-lamp. SETTING: Solihull Hospital and Aston University, Birmingham, UK DESIGN: Comparative non-interventional study. METHODS: The dynamic range of the Aston Aberrometer was assessed using a calibrated model eye. The validity of the Aston Aberrometer was compared to a conventional desk mounted Shack-Hartmann aberrometer (Topcon KR1W) by measuring the refractive error and higher order aberrations of 75 dilated eyes with both instruments in random order. The Aston Aberrometer measurements were repeated five times to assess intra-session repeatability. Data was converted to vector form for analysis. RESULTS: The Aston Aberrometer had a large dynamic range of at least +21.0 D to -25.0 D. It gave similar measurements to a conventional aberrometer for mean spherical equivalent (mean difference ± 95% confidence interval: 0.02 ± 0.49D; correlation: r=0.995, p<0.001), astigmatic components (J0: 0.02 ± 0.15D; r=0.977, p<0.001; J45: 0.03 ± 0.28; r=0.666, p<0.001) and higher order aberrations RMS (0.02 ± 0.20D; r=0.620, p<0.001). Intraclass correlation coefficient assessments of intra-sessional repeatability for the Aston Aberrometer were excellent (spherical equivalent =1.000, p<0.001; astigmatic components J0 =0.998, p<0.001, J45=0.980, p<0.01; higher order aberrations RMS =0.961, p<0.001). CONCLUSIONS: The Aston Aberrometer gives valid and repeatable measures of refractive error and higher order aberrations over a large range. As it is able to measure continuously, it can provide direct feedback to surgeons during intraocular lens implantations and corneal surgery as to the optical status of the visual system.
Resumo:
Age-related macular degeneration and cataract are very common causes of visual impairment in the elderly. Macular pigment optical density is known to be a factor affecting the risk of developing age-related macular degeneration but its behaviour due to light exposure to the retina and the effect of macular physiology on this measurement are not fully understood. Cataract is difficult to grade in a way which reflects accurately the visual status of the patient. A new technology, optical coherence tomography, which allows a cross sectional slice of the crystalline lens to be imaged has the potential to be able to provide objective measurements of cataract which could be used for grading purposes. This thesis set out to investigate the effect of cataract removal on macular pigment optical density, the relationship between macular pigment optical density and macular thickness and the relationship between cortical cataract density as measured by optical coherence tomography and other measures of cataract severity. These investigations found: 1) Macular pigment optical density in a pseudophakic eye is reduced when compared to a fellow eye with age related cataract, probably due to differences in light exposure between the eyes. 2) Lower macular pigment optical density is correlated with thinning of the entire macular area, but not with thinning of the fovea or central macula. 3) Central macular thickness decreases with age. 4) Spectral domain optical coherence tomography can be used to successfully acquire images of the anterior lens cortex which relate well to slit lamp lens sections. 5) Grading of cortical cataract with spectral domain optical coherence tomography instruments using a wavelength of 840nm is not well correlated with other established metrics of cataract severity and is therefore not useful as presented as a grading method for this type of cataract.
Resumo:
PURPOSE: To evaluate factors affecting corneoscleral profile (CSP) using Anterior Segment Optical Coherence Tomography (AS-OCT) in combination with conventional videokeratoscopy. METHODS: OCT data were collected from 204 subjects of mean age 34.9 years (SD: ±15.2 yrs, range 18 to 65) using the Zeiss Visante AS-OCT and Medmont M300 corneal topographer. Measurements of corneal diameter (CD), corneal sagittal height (CS), iris diameter (ID), corneoscleral junction angle (CSJ) and scleral radius (SR) were extracted from multiple OCT images. Horizontal visible iris diameter (HVID) and vertical palpebral aperture (PA) were measured using a slit lamp graticule. Subject body height was also measured. Associations were then sought between CSP variables and age, height, ethnicity, sex and refractive error data collected. Results: Significant correlations were found between age and ocular topography variables of HVID, PA, CSJ, SR and ID (P<0.0001), while height correlated with HVID, CD and ID, and power vector terms only with vertical plane keratometry, CD and CS. Significant differences were noted between ethnicities with respect to CD (P=0.0046), horizontal and vertical CS (P=0.0068 and P=0.0095), and also horizontal ID (P=0.0010), while the same variables, with the exception of vertical CS, also varied with sex; horizontal CD (P=0.0018), horizontal CS (P=0.0018) and ID (P=0.0012). Age accounted for up to 36% of the variance in CSP variables. Conclusion: Age is the main factor influencing corneoscleral topography; consequently, this should be taken into consideration in contact lens design, in the optimization of surgical procedures involving the cornea and sclera and in IOL selection.
Resumo:
PURPOSE. To examine the relation between ocular surface temperature (OST) assessed by dynamic thermal imaging and physical parameters of the anterior eye in normal subjects. METHODS. Dynamic ocular thermography (ThermoTracer 7102MX) was used to record body temperature and continuous ocular surface temperature for 8 s after a blink in the right eyes of 25 subjects. Corneal thickness, corneal curvature, and anterior chamber depth (ACD) were assessed using Orbscan II; noninvasive tear break-up time (NIBUT) was assessed using the tearscope; slit lamp photography was used to record tear meniscus height (TMH) and objective bulbar redness. RESULTS. Initial OST after a blink was significantly correlated only with body temperature (r = 0.80, p < 0.0005), NIBUT (r = -0.68, p < 0.005) and corneal curvature (r = -0.40, p = 0.05). A regression model containing all the variables accounted for 70% (p = 0.002) of the variance in OST, of which NIBUT (29%, p = 0.004), and body temperature (18%, p = 0.005) contributed significantly. CONCLUSIONS. The results support previous theoretical models that OST radiation is principally related to the tear film; and demonstrate that it is less related to other characteristics such as corneal thickness, corneal curvature, and anterior chamber depth. © 2007 American Academy of Optometry.
Resumo:
Purpose: To compare graticule and image capture assessment of the lower tear film meniscus height (TMH). Methods: Lower tear film meniscus height measures were taken in the right eyes of 55 healthy subjects at two study visits separated by 6 months. Two images of the TMH were captured in each subject with a digital camera attached to a slit-lamp biomicroscope and stored in a computer for future analysis. Using the best of two images, the TMH was quantified by manually drawing a line across the tear meniscus profile, following which the TMH was measured in pixels and converted into millimetres, where one pixel corresponded to 0.0018 mm. Additionally, graticule measures were carried out by direct observation using a calibrated graticule inserted into the same slit-lamp eyepiece. The graticule was calibrated so that actual readings, in 0.03 mm increments, could be made with a 40× ocular. Results: Smaller values of TMH were found in this study compared to previous studies. TMH, as measured with the image capture technique (0.13 ± 0.04 mm), was significantly greater (by approximately 0.01 ± 0.05 mm, p = 0.03) than that measured with the graticule technique (0.12 ± 0.05 mm). No bias was found across the range sampled. Repeatability of the TMH measurements taken at two study visits showed that graticule measures were significantly different (0.02 ± 0.05 mm, p = 0.01) and highly correlated (r = 0.52, p < 0.0001), whereas image capture measures were similar (0.01 ± 0.03 mm, p = 0.16), and also highly correlated (r = 0.56, p < 0.0001). Conclusions: Although graticule and image analysis techniques showed similar mean values for TMH, the image capture technique was more repeatable than the graticule technique and this can be attributed to the higher measurement resolution of the image capture (i.e. 0.0018 mm) compared to the graticule technique (i.e. 0.03 mm). © 2006 British Contact Lens Association.
Resumo:
Purpose: To optimize anterior eye fluorescein viewing and image capture. Design: Prospective experimental investigation. Methods: The spectral radiance of ten different models of slit-lamp blue luminance and the spectral transmission of three barrier filters were measured. Optimal clinical instillation of fluorescein was evaluated by a comparison of four different instillation methods of fluorescein into 10 subjects. Two methods used a floret, and two used minims of different concentration. The resulting fluorescence was evaluated for quenching effects and efficiency over time. Results: Spectral radiance of the blue illumination typically had an average peak at 460 nm. Comparison between three slit-lamps of the same model showed a similar spectral radiance distribution. Of the slit-lamps examined, 8.3% to 50.6% of the illumination output was optimized for >80% fluorescein excitation, and 1.2% to 23.5% of the illumination overlapped with that emitted by the fluorophore. The barrier filters had an average cut-off at 510 to 520 nm. Quenching was observed for all methods of fluorescein instillation. The moistened floret and the 1% minim reached a useful level of fluorescence in on average ∼20s (∼2.5× faster than the saturated floret and 2% minim) and this lasted for ∼160 seconds. Conclusions: Most slit-lamps' blue light and yellow barrier filters are not optimal for fluorescein viewing and capture. Instillation of fluorescein using a moistened floret or 1% minim seems most clinically appropriate as lower quantities and concentrations of fluorescein improve the efficiency of clinical examination. © 2006 Elsevier Inc. All rights reserved.