816 resultados para Skeleton.
Resumo:
The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record delta(13)C values of ambient seawater dissolved inorganic carbon. Here, we measured delta(13)C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO(2) into the northern North Pacific Ocean and Bering Sea. The delta(13)C was measured in the high Mgcalcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in delta(13)C values increased from 0.03% yr(-1) in the 1960s to 0.095% yr(-1) in the 1990s, which was higher than expected due to solely the delta(13)C-Suess effect. Deeper water in this region exhibits higher concentrations of CO(2) and low delta(13)C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the delta(13)C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended delta(13)C records also varied on 4-7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling.
Resumo:
The purpose of this research was to elucidate the mechanism of assembly of retroviruses, specifically of murine leukemia virus, as studied through the treatment of virus-infected cells with interferon and through the use of temperature sensitive (ts) mutants. Our studies have shown a rapid and specific association of Rauscher murine leukemia virus (R-MuLV) precursor polyprotein Pr65('gag) with cytoskeletal elements in infected mouse fibroblasts. The Pr65('gag) associated with Nonidet P-40 (NP40)-insoluble cytoskeletal structures appeared to be subphosphorylated in comparison to NP40-soluble Pr65('gag). The association of Pr65('gag) with skeletal elements could be disrupted by extraction of the cytoskeleton with sodium deoxycholate, an ionic detergent. Both the skeleton-associated Pr65('gag) and its NP40-soluble counterpart were labeled with {('3)H}-palmitate, indicating their probable association with lipids presumably in the plasma membrane. Pr65('gag) molecules bound to skeletal elements in the infected cell appeared to be more stable to proteolytic processing than NP40-soluble Pr65('gag). Our studies with certain ts mutants of murine leukemia virus, defective in virus assembly, including Mo-MuLV ts3 and R-MuLV ts17, ts24, ts25 and ts26, have shown that virions released at 39(DEGREES)C (nonpermissive temperature) had high levels of uncleaved Pr65('gag) relative to that seen in virions released at 33(DEGREES)C (permissive temperature). Examination of cell extracts revealed that Pr54('gag) was more stable to processing at 39(DEGREES)C than at 33(DEGREES)C, whereas the 'env' and glycosylated 'gag' proteins were processed to the same extent at both temperatures. Detergent extraction of pulse-labeled cells to generate an NP40-insoluble cytoskeleton-enriched fraction showed that in ts3-, ts17- and ts24-infected cells, Pr65('gag) accumulated in the cytoskeleton-enriched fraction. In contrast, cells infected with ts25 or ts26 showed no preferential localization of Pr65('gag) in the cytoskeleton in a short pulse, but instead, Pr65('gag) accumulated in both the NP40-soluble and -insoluble fractions during a chase-incubation. The association of Pr65('gag) with cytoskeletal elements in the cell was neither increased nor decreased by blocking virus assembly and release with interferon. Based on these and other results, we have proposed a model for the active role of cytoskeleton-associated Pr65('gag) in retrovirus assembly.^
Resumo:
Bone marrow ablation, i.e., the complete sterilization of the active bone marrow, followed by bone marrow transplantation (BMT) is a comment treatment of hematological malignancies. The use of targeted bone-seeking radiopharmaceuticals to selectively deliver radiation to the adjacent bone marrow cavities while sparing normal tissues is a promising technique. Current radiopharmaceutical treatment planning methods do not properly compensate for the patient-specific variable distribution of radioactive material within the skeleton. To improve the current method of internal dosimetry, novel methods for measuring the radiopharmaceutical distribution within the skeleton were developed. 99mTc-MDP was proven as an adequate surrogate for measuring 166Ho-DOTMP skeletal uptake and biodistribution, allowing these measures to be obtained faster, safer, and with higher spatial resolution. This translates directly into better measurements of the radiation dose distribution within the bone marrow. The resulting bone marrow dose-volume histograms allow prediction of the patient disease response where conventional organ scale dosimetry failed. They indicate that complete remission is only achieved when greater than 90% of the bone marrow receives at least 30 Gy. ^ Comprehensive treatment planning requires combining target and non-target organ dosimetry. Organs in the urinary tract were of special concern. The kidney dose is primarily dependent upon the mean transit time of 166 Ho-DOTMP through the kidney. Deconvolution analysis of renograms predicted a mean transit time of 2.6 minutes for 166Ho-DOTMP. The radiation dose to the urinary bladder wall is dependent upon numerous factors including patient hydration and void schedule. For beta-emitting isotopes such as 166Ho, reduction of the bladder wall dose is best accomplished through good patient hydration and ensuring a partially full bladder at the time of injection. Encouraging the patient to void frequently, or catheterizing the patient without irrigation, will not significantly reduce the bladder wall dose. ^ The results from this work will produce the most advanced treatment planning methodology for bone marrow ablation therapy using radioisotopes currently available. Treatments can be tailored specifically for each patient, including the addition of concomitant total body irradiation for patients with unfavorable dose distributions, to deliver a desired patient disease response, while minimizing the dose or toxicity to non-target organs. ^
Resumo:
During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic-Helix-Loop-Helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. This dissertation focuses on the cloning, expression and functional analysis of a bHLH protein termed paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in both its amino and carboxyl termini. During the process of mouse embryogenesis, paraxis transcripts are first detected at about day 7.5 post coitum within the primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated within the myotome.^ To determine the function of paraxis during mammalian embryogenesis, mice were generated with a null mutation in the paraxis locus. Paraxis null mice survived until birth, but exhibited severe foreshortening along the anteroposterior axis due to the absence of vertebrae caudal to the midthoracic region. The phenotype also included axial skeletal defects, particularly shortened bifurcated ribs which were detached from the vertebral column, fused vertebrae and extensive truncation and disorganization caudal to the hindlimbs. Mutant neonates also lacked normal levels of trunk muscle and exhibited defects in the dermis as well as the stratification of the epidermis. Analysis of paraxis -/- mutant embryos has revealed a failure of the somites to both properly epithelialize and compartmentalize, resulting in defects in somite-derived cell lineages. These results suggest that paraxis is an essential component of the genetic pathway regulating somitogenesis. ^
Resumo:
The small leucine-rich repeat proteoglycans (or SLRPs) are a group of extracellular proteins (ECM) that belong to the leucine-rich repeat (LRR) superfamily of proteins. The LRR is a protein folding motif composed of 20–30 amino acids with leucines in conserved positions. LRR-containing proteins are present in a broad spectrum of organisms and possess diverse cellular functions and localization. In mammals, the SLRPs are abundant in connective tissues, such as bones, cartilage, tendons, skin, and blood vessels. We have discovered a new member of the class I small leucine rich repeat proteoglycan (SLRP) family which is distinct from the other class I SLRPs since it possesses a unique stretch of aspartate residues at its N-terminus. For this reason, we called the molecule asporin. The deduced amino acid sequence is about 50% identical (and 70% similar) to decorin and biglycan. However, asporin does not contain a serine/glycine dipeptide sequence required for the assembly of O-linked glycosaminoglycans and is probably not a proteoglycan. The tissue expression of asporin partially overlaps with the expression of decorin and biglycan. During mouse embryonic development, asporin mRNA expression was detected primarily in the skeleton and other specialized connective tissues; very little asporin message was detected in the major parenchymal organs. The mouse asporin gene structure is similar to that of biglycan and decorin with 8 exons. The asporin gene is localized to human chromosome 9q22-9g21.3 where asporin is part of a SLRP gene cluster that includes ECM2, osteoadherin, and osteoglycin. This gene cluster of four LRR-encoding genes is embedded in a 238 kilobase intron of another novel gene named Tes9orf that is expressed primarily in the testes of the adult mouse. The SLRP genes are not present in Drosophila or C. elegans , but reside in three separate gene clusters in the puffer fish, mice and humans. Targeted disruption of individual mouse SLRP genes display minor connective tissue defects such as skin fragility, tendon laxity, minor growth plate defects, and mild osteoporosis. However, double and triple knockouts of SLRP genes exacerbate these phenotypes. Both the double epiphycan/biglycan and the triple PRELP/fibromodulin/biglycan knockout mice exhibit premature osteoarthritis. ^
Resumo:
We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g^-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A potential scenario is a combination of detrital contamination and U addition by secondary pore infillings. Our results show that the dense theca wall material of D. strigosa is generally less affected by post-depositional open-system behaviour and better suited for 230Th/U-dating than the bulk material. This is also obvious from the fact that all ages of theca wall material reflect a Last Interglacial origin (~125 ka), whereas the bulk material samples are either substantially older or younger. However, for some corals, the 230Th/U-ages and activity ratios of the bulk material and the theca wall samples are similar. This shows that strictly reliable 230Th/U-ages can also be obtained from bulk material samples of exceptionally well-preserved corals. However, the bulk material samples more frequently show elevated activity ratios and ages than the corresponding theca wall samples. Our findings should be generally applicable to brain corals (Mussidae) that are found in tropical oceans worldwide and may enable reliable 230Th/U-dating of fossil corals with similar skeletal architecture, even if their bulk skeleton is altered by diagenesis. The 230Th/U-ages we consider reliable (120-130 ka), along with a recently published age of 118 ka, provide the first comprehensive dating of the elevated lower reef terrace at Bonaire (118-130 ka), which is in agreement in timing and duration with other Last Interglacial records.
Resumo:
Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.
Resumo:
A series of novel long-chain 3,4-dialkylthiophenes (C36-C54) was identified in a number of sediments ranging from Pleistocene to Cretaceous. The identifications were based on mass spectral characterisation, desulphurisation and mass spectral data of synthesised model compounds. These organic sulphur compounds are probably formed by sulphur incorporation into mid-chain dimethylalkadienes with two methylenic double bonds. These putative precursor lipids are unprecedented and may be considered rather unusual. The distribution of 3,4-dialkylthiophenes in sediments varies considerably with the depositional palaeoenvironment, indicating that these compounds have a potential as molecular markers reflecting changes in palaeoenvironment.
Resumo:
Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.
Resumo:
X-ray powder diffraction and optical and scanning-electron microscope analyses of sediment samples taken from four sites drilled in the Goban Spur area of the northeast Atlantic show variable diagenetic silicification of sediments at several stratigraphic horizons. The results are as follows: 1. The silicified sediments are middle Eocene at Site 548, Paleocene to lower Albian at Site 549, upper to lower Paleocene at Site 550, and lower Turanian at Site 551. 2. There are three types of these silicified sediments: nodular type in carbonate-rich host sediments, bedded type in clayey host sediments, and a type transitional between the other two. 3. Silica diagenesis is considered to progress as follows: dissolution of siliceous fossils; precipitation of opal CT in pore spaces and transformation of biogenic silica (opal A) to opal CT, development of opal CT cement; chalcedonic quartz precipitation in pore spaces and replacement of foraminiferal tests by chalcedonic quartz; and finally, transformation of opal CT to quartz, and cementation. But the strong influence of host-sediment types on diagenetic silica fades is recognized. Bedded-type silicified sediments in a clayey environment indicate a lower grade of silica diagenesis. Only very weak chalcedonic quartz formation is recognized, and there is no opal CT cementation, even in Lower Cretaceous bedded-type clayey silicified sediments. 4. The rf(101) spacing of opal CT shows two distinct trends of ordering or decrease with burial depth; one is a rapid change, in the case of nodular silicified sediments, and the other is a more gentle shift, found in bedded silicified sediments. 5. Diagenetic silica facies of the nodular type develop as irregular concentric zones around some nodule nuclei. Also, quartz-chert nodule formation occurs at rather shallower horizons, and is discordant with the trend of decreasing d(101) spacing in opal CT. 6. Silicified sediments at Site 551 are shallower than at the other sites. The diagenetic silica facies suggest the probable erosion of 300 m or more of sediment at this site. 7. The zeolites clinoptilolite and phillipsite were found in the sediment samples recovered on Leg 80. Clinoptilolite occurs from the shallower levels to the deepest horizons of diagenetically silicified zones, suggesting that clinoptilolite formation is related to diagenesis of biogenic silica. Phillipsite at Site 551 (Section 551-5-2) may originate from volcanogenie material.
Resumo:
The environmental interpretation of the 13C/12C variations in the skeletons of massive corals is still a matter of debate. A 19-year seasonal skeletal 13C/12C record of a shallow-water Pontes coral from the northern Red Sea (Gulf of Aqaba) documents interannual events of extraordinarily large plankton blooms, indicated by anomalous 13C depletions in the coral skeleton. These blooms are caused by deep vertical water mass mixing, convectively driven in colder winters, which results in increased supplies of nutrients to the surface waters. The deep vertical mixings can sometimes be driven by the cooling occurring throughout the Middle East after large tropical volcanic eruptions. We therefore have evidence in our coral skeletal 13C/12C record for an indirect volcanic signal of the eruptions of El Chichón (1982) and Mount Pinatubo (1991). Deep mixing induced 13C/12C variations of the dissolved inorganic carbon in the surface waters can be neglected at this location. We therefore suggest that the 13C skeletal depletions can be best explained by changes in the coral's autotrophy-heterotrophy diet, through increased heterotrophic feeding on Zooplankton during the blooms. Increased feeding on 13C-depleted Zooplankton or increased heterotrophy at the expense of autotrophy can both result in a 13C-depleted coral skeleton. However, this suggestion requires more testing. If our conclusions are substantiated, seasonal skeletal 13C/12C records of corals which change from autotrophy under normal conditions to increased heterotrophy during bloom events may be used as indicators of ocean paleoproductivity at interannual resolution, available from no other source.