903 resultados para Simulation and modelling
Resumo:
The focus of this thesis is to discuss the development and modeling of an interface architecture to be employed for interfacing analog signals in mixed-signal SOC. We claim that the approach that is going to be presented is able to achieve wide frequency range, and covers a large range of applications with constant performance, allied to digital configuration compatibility. Our primary assumptions are to use a fixed analog block and to promote application configurability in the digital domain, which leads to a mixed-signal interface. The use of a fixed analog block avoids the performance loss common to configurable analog blocks. The usage of configurability on the digital domain makes possible the use of all existing tools for high level design, simulation and synthesis to implement the target application, with very good performance prediction. The proposed approach utilizes the concept of frequency translation (mixing) of the input signal followed by its conversion to the ΣΔ domain, which makes possible the use of a fairly constant analog block, and also, a uniform treatment of input signal from DC to high frequencies. The programmability is performed in the ΣΔ digital domain where performance can be closely achieved according to application specification. The interface performance theoretical and simulation model are developed for design space exploration and for physical design support. Two prototypes are built and characterized to validate the proposed model and to implement some application examples. The usage of this interface as a multi-band parametric ADC and as a two channels analog multiplier and adder are shown. The multi-channel analog interface architecture is also presented. The characterization measurements support the main advantages of the approach proposed.
Resumo:
The objective of this study was to evaluate the use of probit and logit link functions for the genetic evaluation of early pregnancy using simulated data. The following simulation/analysis structures were constructed: logit/logit, logit/probit, probit/logit, and probit/probit. The percentages of precocious females were 5, 10, 15, 20, 25 and 30% and were adjusted based on a change in the mean of the latent variable. The parametric heritability (h²) was 0.40. Simulation and genetic evaluation were implemented in the R software. Heritability estimates (ĥ²) were compared with h² using the mean squared error. Pearson correlations between predicted and true breeding values and the percentage of coincidence between true and predicted ranking, considering the 10% of bulls with the highest breeding values (TOP10) were calculated. The mean ĥ² values were under- and overestimated for all percentages of precocious females when logit/probit and probit/logit models used. In addition, the mean squared errors of these models were high when compared with those obtained with the probit/probit and logit/logit models. Considering ĥ², probit/probit and logit/logit were also superior to logit/probit and probit/logit, providing values close to the parametric heritability. Logit/probit and probit/logit presented low Pearson correlations, whereas the correlations obtained with probit/probit and logit/logit ranged from moderate to high. With respect to the TOP10 bulls, logit/probit and probit/logit presented much lower percentages than probit/probit and logit/logit. The genetic parameter estimates and predictions of breeding values of the animals obtained with the logit/logit and probit/probit models were similar. In contrast, the results obtained with probit/logit and logit/probit were not satisfactory. There is need to compare the estimation and prediction ability of logit and probit link functions.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Synthesis, characterization, DFT simulation and biological assays of two new metal complexes of 2-(2-thienyl)benzothiazole - BTT are reported. The complexes [Ag(BTT)(2)NO3] - AgBTT2 and [Au(BTT)Cl]center dot 1/2H(2)O - AuBTT were obtained by mixing the ligand with silver (I) nitrate or gold(I) chloride in methanolic solution. Characterization of the complexes were based on elemental (C, H, N and S), thermal (TG-DTA) analysis, C-13 and H-1 NMR, FT-IR and UV-Vis spectroscopic measurements, as well as the X-ray structure determination for AgBTT2. Spectroscopic data predicted by DFT calculations were in agreement with the experimental data for both complexes. The ligand BTT was synthesized by the condensation of 2-thiophenecarboxaldehyde and 2-aminothiophenol in a microwave furnace. AgBTT2 has a monomeric structure. Both complexes show a good activity against Mycobacterium tuberculosis. Free BIT shows low antitubercular activity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work shows the design, simulation, and analysis of two optical interconnection networks for a Dataflow parallel computer architecture. To verify the optical interconnection network performance on the Dataflow architecture, we have analyzed the load balancing among the processors during the parallel programs executions. The load balancing is a very important parameter because it is directly associated to the dataflow parallelism degree. This article proves that optical interconnection networks designed with simple optical devices can provide efficiently the dataflow requirements of a high performance communication system.
Resumo:
The luciferases of the railroad worm Phrixotrix (Coleoptera: Phengodidae) are the only beetle luciferases that naturally produce true red bioluminescence. Previously, we cloned the green- (PxGR) and red-emitting (PxRE) luciferases of railroad worms Phrixotrix viviani and P. hirtus[OLE1]. These luciferases were expressed and purified, and their active-site properties were determined. The red-emitting PxRE luciferase displays flash-like kinetics, whereas PxGR luciferase displays slow-type kinetics. The substrate affinities and catalytic efficiency of PxRE luciferase are also higher than those of PxGR luciferase. Fluorescence studies with 8-anilino-1-naphthalene sulfonic acid and 6-p-toluidino-2-naphthalene sulfonic acid showed that the PxRE luciferase luciferin-binding site is more polar than that of PxGR luciferase, and it is sensitive to guanidine. Alutagenesis and modelling studies suggest that several invariant residues in the putative luciferin-binding site of PxRE luciferase cannot interact with excited oxyluciferin. These results suggest that one portion of the luciferin-binding site of the red-emitting luciferase is tighter than that of PxGR luciferase, whereas the other portion could be more open and polar.
Resumo:
A emissão de CO2 do solo apresenta alta variabilidade espacial, devido à grande dependência espacial observada nas propriedades do solo que a influenciam. Neste estudo, objetivou-se: caracterizar e relacionar a variabilidade espacial da respiração do solo e propriedades relacionadas; avaliar a acurácia dos resultados fornecidos pelo método da krigagem ordinária e simulação sequencial gaussiana; e avaliar a incerteza na predição da variabilidade espacial da emissão de CO2 do solo e demais propriedades utilizando a simulação sequencial gaussiana. O estudo foi conduzido em uma malha amostral irregular com 141 pontos, instalada sobre a cultura de cana-de-açúcar. Nesses pontos foram avaliados a emissão de CO2 do solo, a temperatura do solo, a porosidade livre de água, o teor de matéria orgânica e a densidade do solo. Todas as variáveis apresentaram estrutura de dependência espacial. A emissão de CO2 do solo mostrou correlações positivas com a matéria orgânica (r = 0,25, p < 0,05) e a porosidade livre de água (r = 0,27, p <0,01) e negativa com a densidade do solo (r = -0,41, p < 0,01). No entanto, quando os valores estimados espacialmente (N=8833) são considerados, a porosidade livre de água passa a ser a principal variável responsável pelas características espaciais da respiração do solo, apresentando correlação de 0,26 (p < 0,01). As simulações individuais propiciaram, para todas as variáveis analisadas, melhor reprodução das funções de distribuição acumuladas e dos variogramas, em comparação à krigagem e estimativa E-type. As maiores incertezas na predição da emissão de CO2 estiveram associadas às regiões da área estudada com maiores valores observados e estimados, produzindo estimativas, ao longo do período estudado, de 0,18 a 1,85 t CO2 ha-1, dependendo dos diferentes cenários simulados. O conhecimento das incertezas gerado por meio dos diferentes cenários de estimativa pode ser incluído em inventários de gases do efeito estufa, resultando em estimativas mais conservadoras do potencial de emissão desses gases.
Resumo:
In this work, thermodynamic and economic analyses are applied to a Brazilian thermal power plant operating with natural gas. The analyses are performed in two cases: the current configuration and the future configuration. The current configuration is constituted by four gas turbines which operate in open cycle. The future configuration is obtained by a plant repowering by addition of four recovery boilers, two steam turbines and others equipment and accessories necessary to operate in combined cycle. In order to obtain the performance parameters, energetic and exergetic analyses for each case considered are carried out. on the other hand, thermoeconomic analysis provides means to evaluate the influences of the capital and fuel costs in the composition of the electricity costs. Techniques of investment analysis are also applied to the new configuration and from the results obtained it is possible to verify the advantages of the modifications.
Resumo:
The present work shows an experimental and theoretical study on heat flow when end milling, at high-speed, hardened steels applied to moulds and dies. AISI H13 and AISI D2 steels were machined with two types of ball nose end mills: coated with (TiAl)N and tipped with PcBN. The workpiece geometry was designed to simulate tool-workpiece interaction in real situations found in mould industries, in which complex surfaces and thin walls are commonly machined. The compressed and cold air cooling systems were compared to dry machining Results indicated a relatively small temperature variation, with higher range when machining AISI D2 with PcBN-tipped end mill. All cooling systems used demonstrated good capacity to remove heat from the machined surface, especially the cold air. Compressed air was the most indicated to keep workpiece at relatively stable temperature. A theoretical model was also proposed to estimate the energy transferred to the workpiece (Q) and the average convection coefficient ((h) over bar) for the cooling systems used. The model used a FEM simulation and a steepest decent method to find the best values for both variables. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In recent years, many researchers in the field of biomedical sciences have made successful use of mathematical models to study, in a quantitative way, a multitude of phenomena such as those found in disease dynamics, control of physiological systems, optimization of drug therapy, economics of the preventive medicine and many other applications. The availability of good dynamic models have been providing means for simulation and design of novel control strategies in the context of biological events. This work concerns a particular model related to HIV infection dynamics which is used to allow a comparative evaluation of schemes for treatment of AIDS patients. The mathematical model adopted in this work was proposed by Nowak & Bangham, 1996 and describes the dynamics of viral concentration in terms of interaction with CD4 cells and the cytotoxic T lymphocytes, which are responsible for the defense of the organism. Two conceptually distinct techniques for drug therapy are analyzed: Open Loop Treatment, where a priori fixed dosage is prescribed and Closed Loop Treatment, where the doses are adjusted according to results obtained by laboratory analysis. Simulation results show that the Closed Loop Scheme can achieve improved quality of the treatment in terms of reduction in the viral load and quantity of administered drugs, but with the inconvenience related to the necessity of frequent and periodic laboratory analysis.
Resumo:
This work proposes a new isolated high power factor 12kW power supply based on an 18-pulse transformer arrangement. Three full-bridge converters are used for isolation and to balance the DC-link currents, without current sensing or a current controller. The topology provides a regulated DC output with a very simple control strategy. Simulation and experimental results are presented in this paper.
Resumo:
The biggest advantage of plasma immersion ion implantation (PIII) is the capability of treating objects with irregular geometry without complex manipulation of the target holder. The effectiveness of this approach relies on the uniformity of the incident ion dose. Unfortunately, perfect dose uniformity is usually difficult to achieve when treating samples of complex shape. The problems arise from the non-uniform plasma density and expansion of plasma sheath. A particle-in-cell computer simulation is used to study the time-dependent evolution of the plasma sheath surrounding two-dimensional objects during process of plasma immersion ion implantation. Before starting the implantation phase, steady-state nitrogen plasma is established inside the simulation volume by using ionization of gas precursor with primary electrons. The plasma self-consistently evolves to a non-uniform density distribution, which is used as initial density distribution for the implantation phase. As a result, we can obtain a more realistic description of the plasma sheath expansion and dynamics. Ion current density on the target, average impact energy, and trajectories of the implanted ions were calculated for three geometrical shapes. Large deviations from the uniform dose distribution have been observed for targets with irregular shapes. In addition, effect of secondary electron emission has been included in our simulation and no qualitative modifications to the sheath dynamics have been noticed. However, the energetic secondary electrons change drastically the plasma net balance and also pose significant X-ray hazard. Finally, an axial magnetic field has been added to the calculations and the possibility for magnetic insulation of secondary electrons has been proven.
Resumo:
This paper presents the analysis, design, simulation, and experimental results for a high frequency high Power-Factor (PF) AC (Alternate Current) voltage regulator, using a Sepic converter as power stage. The control technique employed to impose a sinusoidal input current waveform, with low Total Harmonic Distortion (THD), is the sinusoidal variable hysteresis control. The control technique was implemented in a FPGA (Field Programmable Gate Array) device, using a Hardware Description Language (VHDL). Through the use of the proposed control technique, the AC voltage regulator performs active power-factor correction, and low THD in the input current, for linear and non-linear loads, satisfying the requirements of the EEC61000-3-2 standards. Experimental results from an example prototype, designed for 300W of nominal output power, 50kHz (switching frequency), and 127Vrms of nominal input and output voltages, are presented in order to validate the proposed AC regulator. © 2005 IEEE.
Resumo:
The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. ©2008 IEEE.
Resumo:
This paper presents possible selective current compensation strategies based on the Conservative Power Theory (CPT). This recently proposed theory, introduces the concept of complex power conservation under non-sinusoidal conditions. Moreover, the related current decompositions results in several current terms, which are associated with a specific physical phenomena (power absorption P, energy storage Q, voltage and current distortion D). Such current components are used in this work for the definition of different current compensators, which can be selective in terms of minimizing particular disturbing effects. The choice of one or other current component for compensation directly affects the sizing and cost of active and/or passive devices and it will be demonstrated that it can be done to attend predefined limits for harmonic distortion, unbalances and/or power factor. Single and three-phase compensation strategies will be discussed by means of the CPT Framework. Simulation and experimental results will be demonstrated in order to validate their performance. © 2009 IEEE.