929 resultados para Simplified design method
Resumo:
The complex design process of airport terminal needs to support a wide range of changes in operational facilities for both usual and unusual/emergency events. Process model describes how activities within a process are connected and also states logical information flow of the various activities. The traditional design process overlooks the necessity of information flow from the process model to the actual building design, which needs to be considered as a integral part of building design. The current research introduced a generic method to obtain design related information from process model to incorporate with the design process. Appropriate integration of the process model prior to the design process uncovers the relationship exist between spaces and their relevant functions, which could be missed in the traditional design approach. The current paper examines the available Business Process Model (BPM) and generates modified Business Process Model(mBPM) of check-in facilities of Brisbane International airport. The information adopted from mBPM then transform into possible physical layout utilizing graph theory.
Resumo:
This paper showcases two design tools; the ‘storyboard’ and ‘a day in the life’ demonstrated to design students in their foundational year (first year) of study. By employing these tools during the design process the aim was to provoke students to consider and design for emotional experiences for potential users. The assessment asked students to design an MP3 player using these tools. This is demonstrated through a student project that successfully used the tools and method introduced. The teaching theory, project context, student outcome as well as challenges faced by students using this approach are discussed. The paper concludes with implications for teaching emotion theory at an undergraduate level and potential future directions.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector infrastructure market, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI) by multinational contractors. This study aims to update progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major road and bridges. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors into Australia. Elsewhere, the authors have developed Dunning’s principal hypothesis to suit the context of this research and to address a weakness arising in this hypothesis that is based on a nominal (yes or no) approach to the ownership, location and internalisation factors in Dunning's eclectic framework and which fails to speak to the relative explanatory power of these factors. The authors have completed a first stage test of this development of Dunning's hypothesis based on publically available secondary data, in which it was concluded tentatively that the location factor appears to have the greatest explanatory power. This paper aims to present, for the first time, a further and novel development of the operation of Dunning's eclectic paradigm within the context of multinational contracting, as well as a preview of the design and planned analysis of the next empirical stage in this research concerning case studies. Finally, and beyond the theoretical contributions expected, other expected contributions are mentioned concerning research method and practical implications.
Resumo:
Client owners usually need an estimate or forecast of their likely building costs in advance of detailed design in order to confirm the financial feasibility of their projects. Because of their timing in the project life cycle, these early stage forecasts are characterized by the minimal amount of information available concerning the new (target) project to the point that often only its size and type are known. One approach is to use the mean contract sum of a sample, or base group, of previous projects of a similar type and size to the project for which the estimate is needed. Bernoulli’s law of large numbers implies that this base group should be as large as possible. However, increasing the size of the base group inevitably involves including projects that are less and less similar to the target project. Deciding on the optimal number of base group projects is known as the homogeneity or pooling problem. A method of solving the homogeneity problem is described involving the use of closed form equations to compare three different sampling arrangements of previous projects for their simulated forecasting ability by a cross-validation method, where a series of targets are extracted, with replacement, from the groups and compared with the mean value of the projects in the base groups. The procedure is then demonstrated with 450 Hong Kong projects (with different project types: Residential, Commercial centre, Car parking, Social community centre, School, Office, Hotel, Industrial, University and Hospital) clustered into base groups according to their type and size.
Resumo:
In a study aimed at better understanding how students adapt to new blended studio learning environments, all undergraduate and masters of architecture students at a large school of architecture in Australia, learned a semester of architectural design in newly renovated, technology embedded, design studio environments. The renovations addressed the lessons learned from a 2011 pilot study of a second year architectural design studio learned in a high technology embedded prototype digital laboratory. The new design studios were purpose designed for the architecture students and adapted Student-Centred Active Learning Environment for Undergraduate Programs design principles. At the end of the semester, the students completed a questionnaire about their experiences of learning in the new design studio environments. Using a dual method qualitative approach, the questionnaire data were coded and extrapolated using both thematic analysis and grounded theory methodology. The results from these two approaches were compared, contrasted and finally merged, to reveal five distinct emerging themes, which were instrumental in offering resistance or influencing adaptation to, the new blended studio learning environments. This paper reports on the study, discusses the major contributors to resistance and adaptation, and proposes points for consideration when renovating or designing new blended studio learning environments. This research extends the 2011 pilot study by the same authors: ‘Dichotomy in the design studio: Adapting to new blended learning environments’.
Resumo:
The railway industry has been slow to adopt limit states principles in the structural design of concrete sleepers for its tracks, despite the global take up of this form of design for almost every other type of structural element. Concrete sleeper design is still based on limiting stresses but is widely perceived by track engineers to lead to untapped reserves of strength in the sleepers. Limit design is a more rational philosophy, especially where it is based on the ultimate dynamic capacity of the concrete sleepers. The paper describes the development of equations and factors for a limit design methodology for concrete sleepers in flexure using a probabilistic evaluation of sleeper loading. The new method will also permit a cogent, defensible means of establishing the true capacity of the billions of concrete sleepers that are currently in-track around the world, leading to better utilisation of track infrastructure. The paper demonstrates how significant cost savings may be achieved by track owners.
Resumo:
This paper illustrates the complexity of pointing as it is employed in a design workshop. Using the method of interaction analysis, we argue that pointing is not merely employed to index, locate, or fix reference to an object. It also constitutes a practice for reestablishing intersubjectivity and solving interactional trouble such as misunderstandings or disagreements by virtue of enlisting something as part of the participants’ shared experience. We use this analysis to discuss implications for how such practices might be supported with computer mediation, arguing for a “bricolage” approach to systems development that emphasizes the provision of resources for users to collaboratively negotiate the accomplishment of intersubjectivity ra- ther than systems that try to support pointing as a specific gestural action.
Resumo:
This paper investigates learning environments from the view of the key users - students. Recent literature on designing Learning Landscapes indicates a near absence of the student voice, assuming that the majority of students are either uninterested or unable to express what they want or need, in a learning environment. The focus of this research is to reveal Architecture and Fashion Design students’ perceptions of their learning environments. Furthermore, this study questions the appropriateness of usual design of learning spaces for Design students, or if the environment needs to be specifically catered for the learning of different disciplines of Design, such as Architecture and Fashion Design. Senior Architecture and Fashion Design students were invited to participate in a qualitative mixed method study, including investigation into existing literature, questionnaires, focus groups and spontaneous participatory research. Through the analysis of data it was found that students’ perceptions validate discipline specific learning environments and contribute towards the development of a framework for the design of future Learning Landscapes, for Design education.
Resumo:
Value Management (VM) is a proven methodology that provides a structured framework using supporting tools and techniques that facilitate effective decision-making in many types of projects, thus achieving ‘best value’ for clients. It offers an exceptionally robust approach to exploring the need and function of projects to be aligned with client’s objectives. The functional analysis and creativity phases of VM are crucial as it focused on utilising innovative thinking to understand the objectives of clients’ projects and provide value-adding solutions at the early discovery stages of projects. There is however a perception of VM as just being another cost-cutting tool, which has overshadowed the fundamental benefits of the method, therefore negating both influence and wider use in the construction industry. This paper describes findings from a series of case studies conducted at project and corporate levels of a current public funded infrastructure projects in Malaysia. The study aims to investigate VM processes practised by the project client organisation and evaluate the effects of project team involvement in VM workshops during the design-stage of these projects. The focus of the study is on how issues related to ‘upstream’ infrastructure design aimed at improving ‘downstream’ construction process on-site, are being resolved through multi-disciplinary team consideration and decision-making. Findings from the case studies indicate that the mix of disciplines of project team members at a design-stage of a VM workshop has minimal influence on improving construction processes. However, the degree of interaction, institutionalized thinking, cultural dimensions and visualization aids adopted, have a significant impact in maximizing creativity amongst project team members during VM workshop. The case studies conducted for this research have focused on infrastructure projects that utilise traditional VM workshop as client’s chosen VM methodology to review and develop designs. Documents review and semi-structured interview with project teams are used as data collection techniques for the case study. The significant outcomes of this research are expected to offer alternative perspectives for construction professionals and clients to minimise the constraints and strengthen strategies for implementing VM on future projects.
Resumo:
Reasoning with uncertain knowledge and belief has long been recognized as an important research issue in Artificial Intelligence (AI). Several methodologies have been proposed in the past, including knowledge-based systems, fuzzy sets, and probability theory. The probabilistic approach became popular mainly due to a knowledge representation framework called Bayesian networks. Bayesian networks have earned reputation of being powerful tools for modeling complex problem involving uncertain knowledge. Uncertain knowledge exists in domains such as medicine, law, geographical information systems and design as it is difficult to retrieve all knowledge and experience from experts. In design domain, experts believe that design style is an intangible concept and that its knowledge is difficult to be presented in a formal way. The aim of the research is to find ways to represent design style knowledge in Bayesian net works. We showed that these networks can be used for diagnosis (inferences) and classification of design style. The furniture design style is selected as an example domain, however the method can be used for any other domain.
Resumo:
Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.
Resumo:
Resilient Maroochydore 2029 This exhibition showcases the work of 4th year undergraduate Landscape Architecture students in response to issues of sustainability in Maroochydore on the Queensland Sunshine coast. The projects comprising this exhibition all investigate possible design futures for the Maroochydore Centre, in the light of a series of new disturbance scenarios. Specific disturbances upon the landscape have been imagined, and design resolutions developed based on resilience to these disturbances. The proposals investigate how the Maroochydore Centre might respond to these scenarios, and how future components of the Centre might be designed for greater ‘resilience’. The Exhibition Five groups of students (32 in total) produced five strategic planning and design options toward this future: Team Transect: “What happens to a region following a sustained period of economic prosperity, with affordable property and negligible unemployment? This proposal investigates the effects on a community of massive population explosion, land shortages and inadequate planning regulations following an extended boom period.” The Foodfighters: “This proposal considers the scenario of massive food shortages and of escalating prices, and the possibility of government intervention to stabilise food supply. Strategies based upon simplified, collaborative approaches to food production are investigated.” The TTMKG: “This proposal explores the scenario of Peak Oil and the subsequent effects on society of homelessness, large scale unemployment, food shortages and global financial and political instability. Individual opportunities are restricted by the limitations of bicycle transportation.” Team Peak: “Peak Oil has restricted private vehicle transport to only the most wealthy, while public transport systems are under immense pressure. Rising unemployment drives localised trade initiatives, and the global import/export market has collapsed. This proposal considers the transition of a community from its position in a global economy to that of a relocalised economy, where basic needs are secured as close to home as possible.” After the City: “A rapid population decline as a result of the region’s failing economy has resulted in a fragmented urban fabric. This proposal investigates the possibility of new suburbanisation, reinterpretation and reinvention of space through phased processes.”
Resumo:
In order to develop more inclusive products and services, designers need a means of assessing the inclusivity of existing products and new concepts. Following previous research on the development of scales for inclusive design at University of Cambridge, Engineering Design Centre (EDC) [1], this paper presents the latest version of the exclusion audit method. For a specific product interaction, this estimates the proportion of the Great British population who would be excluded from using a product or service, due to the demands the product places on key user capabilities. A critical part of the method involves rating of the level of demand placed by a task on a range of key user capabilities, so the procedure to perform this assessment was operationalised and then its reliability was tested with 31 participants. There was no evidence that participants rated the same demands consistently. The qualitative results from the experiment suggest that the consistency of participants’ demand level ratings could be significantly improved if the audit materials and their instructions better guided the participant through the judgement process.
Resumo:
Balcony acoustic treatments can be demonstrated to provide important benefits in reducing road traffic noise within the balcony space and consequently internally for any adjacent room. The actual effect on road traffic noise is derived from a multitude of variables that can be broadly categorized into (a) acoustical and (b) geometrical for two distinct propagation volumes being (i) the street space, and (ii) the balcony space. A series of recent research activities in this area has incorporated the use of a combined image and diffuse source model, which can be used to predict the effect of balconies on road traffic noise for large number of scenarios. This paper investigates and presents a method and capability to summarize predictive data into user friendly guidelines aimed for use by acoustical professionals and architects and possible implementation in building design policies for environmental noise. The paper concludes with a presentation of the likely format of a potential design guide.
Resumo:
A novel Glass Fibre Reinforced Polymer (GFRP) sandwich panel was developed by an Australian manufacturer for civil engineering applications. This research is motivated by the new applications of GFRP sandwich structures in civil engineering such as slab, beam, girder and sleeper. An optimisation methodology is developed in this work to enhance the design of GFRP sandwich beams. The design of single and glue laminated GFRP sandwich beam were conducted by using numerical optimisation. The numerical multi-objective optimisation considered a design two objectives simultaneously. These objectives are cost and mass. The numerical optimisation uses the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA) and Finite Element (FE) method. Trade-offs between objectives was found during the optimisation process. Multi-objective optimisation shows a core to skin mass ratio equal to 3.68 for the single sandwich beam cross section optimisation and it showed that the optimum core to skin thickness ratio is 11.0.