834 resultados para Silica-Coated
Resumo:
Lanthanide-doped sol-gel-derived materials are an attractive type of luminescent materials that can be processed at ambient temperatures. However, the solubility of the lanthanide complexes in the matrix is a problem and it is difficult to obtain a uniform distribution of the complexes. Fortunately, these problems can be solved by covalently linking the lanthanide complex to the sol-gel-derived matrix. In this study, luminescent Eu3+ and Tb3+ bipyridine complexes were immobilized on sol-gel-derived silica. FT-IR, DTA-TG and luminescence spectra, as well as luminescence decay analysis, were used to characterize the obtained hybrid materials. The organic groups from the bipyridine-Si moiety were mostly destroyed between 220 and 600 degreesC. The luminescence properties of lanthanide bipyridine complexes anchored to the backbone of the silica network and the corresponding pure complexes were comparatively investigated, which indicates that the lanthanide bipyridine complex was formed during the hydrolysis and co-condensation of TEOS and modified bipyridine. Excitation at the ligand absorption wavelength (336 nm for the hybrid materials and 350 nm for the pure complexes) resulted in strong emission of the lanthanide ions: Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) emission lines due to efficient energy transfer from the ligands to the lanthanide ions.
Resumo:
A facile strategy for the in situ synthesis of terbium complex-silica nanocomposites is described. The resultant spherical nanocomposites possess good monodispersity and exhibit luminescent properties of terbium complex.
Synthesis and characterization of functionalized mesoporous silica by aerosol-assisted self-assembly
Resumo:
An efficient, productive, and low-cost aerosol-assisted self-assembly process has been developed to produce organically modified mesoporous silica particles via a direct co-condensation of silicate species and organosilicates that contain nonhydrolyzable functional groups in the presence of templating surfactant molecules. Different surfactants including cetyltrimethylammonium bromide, nonionic surfactant Brij-56, and triblock copolymer P123 have been used as the structure-directing agents. The organosilanes used in this study include tridecafluoro-1, 1,2,2-tetrahydrooctyltriethoxysilane, methytriethoxysilane, vinyltrimethoxysilane, and 3-(trimethoxysilyl)propyl methacrylate. X-ray diffraction and transmission electron microscopy studies indicate the formation of particles with various mesostructures. Fourier transform infrared and solid-state nuclear magnetic resonance spectra confirm the organic ligands are covalently bound to the surface of the silica framework. The porosity, pore size, and surface area of the particles were characterized using nitrogen adsorption and desorption measurements.
Resumo:
Single-walled carbon nanotubes (SWCNTs) as reinforcing components were extended into silica monoliths and thin films via covalent functionalization for the first time. Silica materials have poor mechanical attributes, which limit their applications. Because of the extreme flexibility of SWCNTs and their large interfacial area, they may be very intriguing as reinforcing fillers for the silica matrix. To get more uniform dispersion and stronger interfacial interaction, SWCNTs were covalently functionalized with silane, and then integrated into silica via a sol - gel process, and their properties were also compared with those of pristine SWCNTs. Results show that the silane-functionalized nanotubes resulted in better mechanical properties ( for example, 33% increase in stress, and 53% increase in toughness), as well as higher electron-transfer kinetics.
Resumo:
An effective electrogenerated chemiluminescence (ECL) sensor was developed by coimmobilization of the Ru(bpy)(2)(3+)-doped silica (RuDS) nanoparticles and carbon nanotubes (CNTs) on glassy carbon electrode through hydrophobic interaction. The uniform RuDS nanoparticles were prepared by a water-in-oil (W/O) microemulsion method and Ru(bpy)(3)(2+) doped inside could still maintain its high ECL efficiency. With such unique immobilization method, a great deal of Ru(bpy)(3)(2+) was immobilized three-dimensionally on the electrode , which could greatly enhance the ECL response and result in the increased sensitivity. On the other hand, CNTs played dual roles as matrix to immobilize RuDS nanoparticles and promoter to accelerate the electron transfer between Ru(bpy)(3)(2+) and the electrode. The as-prepared ECL sensor displayed good sensitivity and stability.
Resumo:
Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.
Resumo:
A novel synthetic route for nearly monodispersed poly(methyl methacrylate)/SiO2 composite particles (PMSCP) is reported. Silica nanoparticles modified with oleic acid were used as 'seeds'. Methyl methacrylate (MMA) monomer was copolymerized with oleic acid via in situ emulsion polymerization, in the presence of an initiator; it resulted finally in the formation of composites with core-shell morphology. The composite particles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The number of silica particles inside the composite particles increases with an increase in the silica concentration. The effect of grafted silica concentration on the morphology of PMSCP is also reported in detail. It was found by thermogravimetric analysis that PMSCP show a potential application for fire retardance.
Resumo:
Nanocrystalline CaTiO3:Pr3+ phosphor layers were coated on nonaggregated, monodisperse, and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2-CaTiO3:Pr3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2-CaTiO3:Pr3+ phosphor particles. The obtained core-shell structured phosphors consist of well dispersed submicron spherical particles with a narrow size distribution. The thickness of the CaTiO3:Pr3+ shell could be easily controlled by changing the number of deposition cycles (about 70 nm for four deposition cycles). The core-shell SiO2-CaTiO3:Pr3+ particles show a strong red emission corresponding to D-1(2)-H-3(4) (612 nm) of Pr3+ under the excitation of ultraviolet (326 nm) and low voltage electron beams (1-5 kV). These particles may be used in field emission displays.
Resumo:
A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size similar to 620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@GdTi2O7:Eu3+ samples show strong emission of Eu3+.
Resumo:
Spherical SiO2 particles have been coated with YVO4:Dy3+/Sm3+ phosphor layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@YVO4:Dy3+/Sm3+ particles. X-ray diffraction (XRD), Fourier-transform IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2 @YVO4:Dy3+/Sm3+ core-shell phosphors. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 300 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (20 nm for one deposition cycle). The core-shell particles show strong characteristic emission from Dy3+ for SiO2@YVO4:Dy3+ and from Sm3+ for SiO2@YVO4:Sm3+ due to an efficient energy transfer from YVO4 host to them. The PL intensity of Dy3+ and Sm3+ increases with raising the annealing temperature and the number of coating cycles.
Resumo:
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Resumo:
The catalytic properties of silver nanoparticles supported on silica and the relation between catalytic activity of silver particles and the support (silica) size are investigated in the present article. The silver nanoparticles with 4 nm diameters were synthesized and were attached to silica spheres with sizes of 40, 78, 105 nm, respectively. The reduction of Rhodamine 6G (R6G) by NaBH4 was designed by using the SiO2/Ag core-shell nanocomposites as catalysts. The experimental results demonstrated that the catalytic activity of silica/silver nanoparticles depends on not only the concentration of catalysts (silver) but also the support silica size. Silver particles supported on small SiO2 spheres (similar to 40 nm) show high catalytic activity. Moreover, by making a comparison between the UV-vis spectra of the catalyst before and after the catalytic reaction, we found that the position of surface plasma resonance (SPR) peak of Ag nanoparticles changes little. The above results suggested that the size and morphology of silver particles were probably kept unchanged after the reduction of R6G and also implied that the catalytic activity of silver particles was hardly lost during the catalytic reaction.
Resumo:
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).
Resumo:
An organic light-emitting diode fabricated by doping a europium, complex tris(dibiphenoylmethane)-mono (phenanthroline)-europium (Eu(DBPM)(3) (Phen)) into polymer poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene) and poly(N-carbazole) was realized by spin coating. Comparison with other europium complexes, due to the existence of a larger spectral overlap between Eu(DBPM)(3)(Phen) and poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4phenylene), a high efficiency red emission was achieved. The device showed a turn-on voltage of 5.2 V The maximum efficiency reached 0.47 cd/A at luminance of 50 cd/m(2). The maximum luminance can reach 150 cd/m(2) at 95 mA/cm(2). To the best of our knowledge, this is one of the best results based on europium complexes by spin-casting method.
Resumo:
Evaporation of a droplet of silica microsphere suspension on a polystyrene and poly(methyl methacrylate) blend film with isolated holes in its surface has been exploited as a means of particles self-assembly. During the retraction of the contact line of the droplet, spontaneous dewetting combined with the strong capillary force pack the silica microspheres into the holes in the polymer surface. Complex aggregates of colloids are formed after being exposed to acetone vapor. The morphology evolution of the underlying polymer film by exposure to acetone solvent vapor is responsible for the complex aggregates of colloids formation.