903 resultados para Signal Authentication
Resumo:
In this paper, we propose a novel iterative receiver
strategy for uncoded multiple-input, multiple-output (MIMO)
systems employing improper signal constellations. The proposed
scheme is shown to achieve superior performance and faster
convergence without the loss of spectrum efficiency compared
to the conventional iterative receivers. The superiority of this
novel approach over conventional solutions is verified by both
simulation and analytical results.
Resumo:
alpha 1-antichymotrypsin (AACT) is a serine protease inhibitor that has been associated with amyloid plaques in the brains of patients with Alzheimer's disease (AD). It has been reported that AACT serum levels are higher in AD patients than in age and sex matched controls. In addition, polymorphisms in the signal peptide and 5' of the AACT gene have been reported to increase the risk of developing AD, Serum AACT has also been suggested to be associated with cognitive decline in elderly subjects. Our objective was to investigate whether a relationship existed between serum AACT levels, AACT genotypes and risk for AD in a case control association study using 108 clinically well defined late onset AD cases and 108 age and sex matched controls from Northern Ireland. We also wished to determine whether higher serum AACT affected levels of cognition as had been previously reported. Serum AACT levels were found to bet significantly raised in cases compared to controls (t = 3.8, df = 209, p
Resumo:
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-kappa B pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.
Resumo:
Spectral signal intensities, especially in 'real-world' applications with nonstandardized sample presentation due to uncontrolled variables/factors, commonly require additional spectral processing to normalize signal intensity in an effective way. In this study, we have demonstrated the complexity of choosing a normalization routine in the presence of multiple spectrally distinct constituents by probing a dataset of Raman spectra. Variation in absolute signal intensity (90.1% of total variance) of the Raman spectra of these complex biological samples swamps the variation in useful signals (9.4% of total variance), degrading its diagnostic and evaluative potential.