957 resultados para Shallow lakes
Resumo:
Winter deicing operations occur extensively in mid- to high-latitude metropolitan regions around the world and result in a significant reduction in road accidents. Deicing salts can, however, pose a major threat to water quality and aquatic organisms. In this paper we examine the utility of Arcellacea (testate amoebae) for monitoring lakes that have become contaminated by winter deicing salts, particularly sodium chloride. We analysed 50 sediment samples and salt-related water-property variables (chloride concentrations; conductivity) from 15 lakes in the Greater Toronto Area and adjacent areas of southern Ontario, Canada. The sampled lakes included lakes in proximity to major highways and suburban roads, and control lakes in forested settings away from road influences. Samples from the most contaminated lakes, with chloride concentrations in excess of 400 mg/l and conductivities of >800 μS/cm, were dominated by species typically found in brackish and/or inhospitable lake environments and by lower faunal diversities (lowest Shannon Diversity Index values) than samples with lower readings. Q-R-mode cluster analysis and Detrended Correspondence Analysis (DCA) resulted in the recognition of four assemblage groupings. These reflect varying levels of salt contamination in the study lakes, along with other local influences, including nutrient loading. The response to nutrients can, however, be isolated if the planktic eutrophic indicator species Cucurbitella tricuspis is removed from the counts. The findings show that the group have considerable potential for biomonitoring in salt-contaminated lakes, and through application to lake sediment cores, may provide significant insights into long-term benthic community health, which is integral for remedial efforts.
Resumo:
This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.
An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.
The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.
With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.
The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.
A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.
The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.
Resumo:
An extensive micro-tephrostratigraphic survey of three small lakes in the Scottish Inner Hebrides was conducted encompassing the Last Glacial–Interglacial Transition (LGIT). The lakes are highly contrasting in terms of lake area to catchment ratio, the presence or absence of stream inlets draining the catchment, and in the complexity of the catchment drainage network. A suite of distal Icelandic volcanic ashes was consistently detected in all three lakes, with three, namely Penifiler Tephra, Vedde Ash and Ashik Tephra, being common to all the lakes. These ashes were chosen to examine the taphonomic intercomparability of ash location and concentration among the lakes. Findings reveal that the part played by catchment inlets in determining ash concentration and within-basin location applies to microtephra layers as much as it does in studies of macrotephra layer thickness. The position of ash concentration maxima is also shown to vary significantly for different LGIT periods and may be a consequence of lake-level changes, especially during the early Holocene. High-resolution stratigraphic analysis through the Vedde Ash visible macrotephra at Loch Ashik reveals a high degree of complexity in taphonomic behaviour between the different geochemical components, with possible implications for the correct interpretation of the isochron position. The detection of multiple intact ash isochrons and the taphonomic processes responsible for their deposition should prove useful in future tephrostratigraphic surveys, as well as having applications within other palaeolimnological disciplines.
Resumo:
Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the ‘classical’ age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20 ± 10 years), whereas lakes in tundra settings accumulate at moderate (mean DT 70 ± 10 years) to very slow rates, (>100 yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9,000 cal BP (BP = years before AD 1950). From between c. 9,000 cal BP and c. 6,000 cal BP, sediment accumulation was relatively rapid (DT of 20 to 60 yr/cm). Accumulation slowed between c. 5,500 and c. 4,000 cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1,200 cal BP at three lakes. Our research will help inform priors in Bayesian age modeling.
Resumo:
Methane-derived authigenic carbonate (MDAC) mound features at the Codling Fault Zone (CFZ), located in shallow waters (50-120m) of the western Irish Sea were investigated and provide a comparison to deep sea MDAC settings. Carbonates consisted of aragonite as the major mineral phase, with δ13C depletion to -50‰ and δ18O enrichment to~2‰. These isotope signatures, together with the co-precipitation of framboidal pyrite confirm that anaerobic oxidation of methane (AOM) is an important process mediating methane release to the water column and the atmosphere in this region. 18O-enrichment could be a result of MDAC precipitation with seawater in colder than present day conditions, or precipitation with 18O-enriched water transported from deep petroleum sources. The 13C depletion of bulk carbonate and sampled gas (-70‰) suggests a biogenic source, but significant mixing of thermogenic gas and depletion of the original isotope signature cannot be ruled out. Active seepage was recorded from one mound and together with extensive areas of reduced sediment, confirms that seepage is ongoing. The mounds appear to be composed of stacked pavements that are largely covered by sand and extensively eroded. The CFZ mounds are colonized by abundant Sabellaria polychaetes and possible Nemertesia hydroids, which benefit indirectly from available hard substrate. In contrast to deep sea MDAC settings where seep-related macrofauna are commonly reported, seep-specialist fauna appear to be lacking at the CFZ. In addition, unlike MDAC in deep waters where organic carbon input from photosynthesis is limited, lipid biomarkers and isotope signatures related to marine planktonic production (e.g. sterols, alkanols) were most abundant. Evidence for microbes involved in AOM was limited from samples taken; possibly due to this dilution effect from organic matter derived from the photic zone, and will require further investigation.
Resumo:
The ecological quality of lakes and other surface water bodies in the European Union is determined by the quality of the structure and functioning of the aquatic ecosystem. The depletion rate of oxygen in the hypolimnion is an important process in thermally stratified lakes and the distribution of consumption between water and sediment an important structural characteristic. It is shown that the variation of volumetric oxygen consumption rate with trophic state can be used to select lake water total phosphorus and chlorophyll concentrations that correspond to changes in the functioning of the lake. Lake morphometry has little effect on this aspect of lake function and the relative amount of oxygen consumption in the water and sediment changes only a little with trophic state, most of the consumption being in the water. Suggestions for the reference condition, good and moderate ecological quality are made using the changes in this aspect of lake function and they are presented as lake water total phosphorus and chlorophyll concentration.
Resumo:
Poilão dam reservoir (Cape Verde Archipelago) is in critical conditions, owing the excessive silting up, the high concentration of nitrates and the pronounced anoxia all over the lake. Considering that the most suitable remediation strategy is the removal of the bottom sediments where nutrients are preferentially concentrated, we have done a geochemical study, in order of evaluating their suitability to agricultural use. Analyses indicate that sediments are rich in a few key nutrients, when compared with parent soils. Thus, adding suitable sediments to nearby degraded soils can improve food crops for smallholder farmers living in close proximity to this system.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
The undesirable enrichment of water by nutrients may be a problem, especially in areas with restricted exchange with the sea. The tidal regime flushes the system and contributes for the removal of phytoplankton, favouring phytobenthos as the target of enhanced nutrients. Water samples were collected during the years of 2006 and 2007-08 for nutrients, chlorophyll a and dissolved oxygen. Sediment sample s were also collected for pore water nutrients and benthic chlorophyll a. From comparison with previous work, a decrease in the nitrogen concentration in the water column can be pointed out, which may indicate an improvement of the water quality. Pore water DAIN represents approximately 75% of the total DAIN of the whole lagoon. Benthic chlorophyll a concentrations were much larger than in the water column, representing around 99% of the total chlorophyll existent in the lagoon. Benthic microalgae play a relevant role in this system and therefore standard monitoring programs of the WFD, which do not consider this component, may fail to track nutrient-driven changes in primary producers. Dissolved oxygen concentration could be near critical levels during the summer (early in the morning), especially in the inner channels.
Resumo:
We estimated the detonation depth and net explosive weight for a very shallow underwater explosion using cutoff frequencies and spectral analysis. With detonation depth and a bubble pulse the net explosive weight for a shallow underwater explosion could simply be determined. The ray trace modeling confirms the detonation depth as a source of the hydroacoustic wave propagation in a shallow channel. We found cutoff frequencies of the reflection off the ocean bottom to be 8.5 Hz, 25 Hz, and 43 Hz while the cutoff frequency of the reflection off the free surface to be 45 Hz including 1.01 Hz for the bubble pulse, and also found the cutoff frequency of surface reflection to well fit the ray-trace modeling. We also attempted to corroborate our findings using a 3D bubble shape modeling and boundary element method. Our findings led us to the net explosive weight of the underwater explosion offshore of Baengnyeong-do for the ROKS Cheonan sinking to be approximately 136 kg TNT at a depth of about 8 m within an ocean depth of around 44 m. © 2015 Elsevier B.V.