983 resultados para Settlement Patterns
Resumo:
Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
Resumo:
Despite its recreational and commercial importance, the movement patterns and spawning habitats of winter flounder (Pseudopleuronectes americanus) in the Gulf of Maine are poorly understood. To address these uncertainties, 72 adult winter flounder (27–48 cm) were fitted with acoustic transmitters and tracked by passive telemetry in the southern Gulf of Maine between 2007 and 2009. Two sympatric contingents of adult winter flounder were observed, which exhibited divergent spawning migrations. One contingent remained in coastal waters during the spawning season, while a smaller contingent of winter flounder was observed migrating to estuarine habitats. Estuarine residence times were highly variable, and ranged from 2 to 91 days (mean=28 days). Flounder were nearly absent from the estuary during the fall and winter months and were most abundant in the estuary from late spring to early summer. The observed seasonal movements appeared to be strongly related to water temperature. This is the first study to investigate the seasonal distribution, migration, and spawning behavior of adult winter flounder in the Gulf of Maine by using passive acoustic telemetry. This approach offered valuable insight into the life history of this species in nearshore and estuarine habitats and improved the information available for the conservation and management of this species.
Resumo:
Most shallow-dwelling tropical marine fishes exhibit different activity patterns during the day and night but show similar transition behavior among habitat sites despite the dissimilar assemblages of the species. However, changes in species abundance, distribution, and activity patterns have only rarely been examined in temperate deepwater habitats during the day and night, where day-to-night differences in light intensity are extremely slight. Direct-observation surveys were conducted over several depths and habitat types on Heceta Bank, the largest rocky bank off the Oregon coast. Day and night fish community composition, relative density, and activity levels were compared by using videotape footage from a remotely operated vehicle (ROV) operated along paired transects. Habitat-specific abundance and activity were determined for 31 taxa or groups. General patterns observed were similar to shallow temperate day and night studies, with an overall increase in the abundance and activity of fishes during the day than at night, particularly in shallower cobble, boulder, and rock ridge habitats. Smaller schooling rockfishes (Sebastes spp.) were more abundant and active in day than in night transects, and sharpchin (S. zacentrus) and harlequin (S. variegatus) rockfish were significantly more abundant in night transects. Most taxa, however, did not exhibit distinct diurnal or nocturnal activity patterns. Rosethorn rockfish (S. helvomaculatus) and hagfishes (Eptatretus spp.) showed the clearest diurnal and nocturnal activity patterns, respectively. Because day and night distributions and activity patterns in demersal fishes are likely to influence both catchability and observability in bottom trawl and direct-count in situ surveys, the patterns observed in the current study should be considered for survey design and interpretation.
Resumo:
We used 25 years of conventional tagging data (n= 6173 recoveries) and 3 years of ultrasonic telemetry data (n=105 transmitters deployed) to examine movement rates and directional preferences of four age classes of red drum (Sciaenops ocellatus) in estuarine and coastal waters of North Carolina. Movement rates of conventionally tagged red drum were dependent on the age, region, and season of tagging. Age-1 and age-2 red drum tagged along the coast generally moved along the coast, whereas fish tagged in oligohaline waters far from the coast were primarily recovered in coastal regions in fall months. Adult (age-4+) red drum moved from overwintering grounds on the continental shelf through inlets into Pamlico Sound in spring and summer months and departed in fall. Few tagged red drum were recovered in adjacent states (0.6% of all recoveries); however, some adult red drum migrated seasonally from overwintering grounds in coastal North Carolina northward to Virginia in spring, returning in fall. Age-2 transmitter-tracked red drum displayed seasonal emigration from a small tributary, but upstream and downstream movements within the tributary were correlated with fluctuating salinity regimes and not season. Large-scale conventional tagging and ultrasonic telemetry programs can provide valuable insights into the complex movement patterns of estuarine fish.
Resumo:
The increase in the abundance of gray snapper (Lutjanus griseus) in Texas bays and estuaries over the past 30 years is correlated to increased wintertime surface water temperatures. Trends in the relative abundance of gray snapper are evaluated by using monthly fishery-independent monitoring data from each of the seven major estuaries along the Texas coast from 1978 through 2006. Environmental conditions during this period demonstrated increasing annual sea surface temperatures, although this increase was not seasonally uniform. The largest proportion of temperature increases was attributed to higher winter temperature minimums since 1993. Positive phases of the North Atlantic Oscillation, resulting in wetter, warmer winters in the eastern United States have occurred nearly uninterrupted since the late 1970s, and unprecedented positive index values occurred between 1989 and 1995. Increases in water temperature in Texas estuaries, beginning in the early 1990s, are postulated to provide both favorable over-wintering conditions for the newly settled juveniles and increased recruitment success. In the absence of cold winters, this species has established semipermanent estuarine populations across the entire Texas coast. A shift to negative phases of the North Atlantic Oscillation will likely result in returns to colder winter temperature minimums that could reverse any recent population gains.
Resumo:
Over 34,000 age 0–2 juvenile sablefish (Anoplopoma fimbria) were tagged and released in southeast Alaska waters during 1985–2005. The data set resulting from this tagging study was unusual because of its time span (20 years) and because age could be reliably inferred from release length (i.e., tagged and released fish were of known age); thus, age-specific movement patterns could be examined. The depth- and area-related recovery patterns supported the concepts that sablefish move to deeper water with age and migrate counterclockwise in the Gulf of Alaska. Availability to the fishery increased rapidly for fish of younger ages, peaked at age 5 to 6, and then gradually declined as sablefish moved deeper with age. Decreased availability with age may occur because of lower fishing effort in deep water and could have substantial implications for sablef ish stock assessments because “domeshaped” availability influences the reliability of abundance estimates. The area-related recovery pattern was not affected by year-class strength; i.e., there was no significant densitydependent relationship.
Resumo:
Identifying the spatial and temporal patterns of larval fish supply and settlement is a key step in understanding the connectivity of meta-populations (Sale et al., 2005). Because of the potentially dispersive nature of the pelagic larval phase of most reef fishes, tracking cohorts from hatching to settlement is extremely difficult (but see Jones et al., 1999). However, for many studies it is sufficient to sample larvae immediately before settlement. Many coral reef fish species use mangrove and seagrass beds as nursery habitats (Nagelkerken et al., 2001; Mumby et al., 2004) and larvae of these species must pass over the reef crest in order to arrive at their preferred settlement habitats. The ability to sample this new cohort of larval fishes provides opportunities for researchers to explore the intricacies of the transition from larva to juvenile (Searcy and Sponaugle, 2001). Quantifying the potential settlers also provides valuable information about the spatial and temporal supply of presettlement larvae (Victor, 1986). Therefore a number of larval sampling methods were developed, one of which is the use of crest nets (Dufour and Galzin, 1993).
Resumo:
Six years of bottom-trawl survey data, including over 6000 trawls covering over 200 km2 of bottom area throughout Alaska’s subarctic marine waters, were analyzed for patterns in species richness, diversity, density, and distribution of skates. The Bering Sea continental shelf and slope, Aleutian Islands, and Gulf of Alaska regions were stratified by geographic subregion and depth. Species richness and relative density of skates increased with depth to the shelf break in all regions. The Bering Sea shelf was dominated by the Alaska skate (Bathyraja parmifera), but species richness and diversity were low. On the Bering Sea slope, richness and diversity were higher in the shallow stratum, and relative density appeared higher in subregions dominated by canyons. In the Aleutian Islands and Gulf of Alaska, species richness and relative density were generally highest in the deepest depth strata. The data and distribution maps presented here are based on species-level data collected throughout the marine waters of Alaska, and this article represents the most comprehensive summary of the skate fauna of the region published to date.
Resumo:
Thirty-three skipjack tuna (Katsuwonus pelamis) (53−73 cm fork length) were caught and released with implanted archival tags in the eastern equatorial Pacific Ocean during April 2004. Six skipjack tuna were recap-tured, and 9.3 to 10.1 days of depth and temperature data were down-loaded from five recovered tags. The vertical habitat-use distributions indicated that skipjack tuna not associated with floating objects spent 98.6% of their time above the thermocline (depth=44 m) during the night, but spent 37.7% of their time below the thermocline during the day. When not associated with floating objects, skipjack tuna displayed repetitive bounce-diving behavior to depths between 50 and 300 m during the day. The deepest dive recorded was 596 m, where the ambient temperature was 7.7°C. One dive was particularly remarkable because the fish contin-uously swam for 2 hours below the thermocline to a maximum depth of 330 m. During that dive, the ambient temperature reached a low of 10.5°C, and the peritoneal cavity temperature reached a low of 15.9°C. The vertical movements and habitat use of skipjack tuna, revealed in this study, provide a much greater understanding of their ecological niche and catchability by purse-seine fisheries.
Resumo:
Feeding habits and feeding strategy of red rockfish (Sebastes capensis) were studied from fish captured along most of the range of this species in coastal waters of South America. Stomach contents of 613 individuals, collected during 2003, were analyzed. Fish were obtained from six locations along the Chilean (23°S to 46°S) and Argentinian (43°S) coasts. The main prey items were Mysidacea (75.06% IRI), Osteichthyes (6.29% IRI),and Rhynchocinetes typus (6.03% IRI). Predator sex and size did not significantly affect the diet, but significant differences were found between locations. Four geographical areas, discriminated by prey occurrence and frequencies, were determined: three on the Pacific coast and one on the Atlantic coast. These areas correspond roughly with biogeographic zones described for the Chilean and southern Argentinian coasts. The feeding strategy index (FSI) indicated a specialized feeding strategy for S. capensis for most of its range. However, the FSI does not include the behaviour of a predator, and the FSI must be interpreted carefully for fishes like S. capensis that are passive ambush feeders. The abundance and availability of different prey may explain both the geographic differences in dietary composition and the specialized feeding strategy of S. capensis.
Resumo:
Background: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. Results: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). Conclusions: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North-and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.
Resumo:
Longline fisheries have grown throughout the world’s oceans for more than 40 years. This type of fisheries has captured high-quality fish (mature individuals rather than unwanted juveniles), has had minimal destructive effects on bottom habitats, and has produced a low bycatch of nontargeted fish (Brothers et al., 1999). Seabirds, however, are hooked accidentally when they swallow or are snagged on the baited hooks set by commercial longline crews (Brothers, 1991; Barnes et al., 1997; Tasker et al., 2000; Belda and Sanchez 2001; Jahncke et al., 2001