882 resultados para Semantic web


Relevância:

30.00% 30.00%

Publicador:

Resumo:

How to create or integrate large Smart Spaces (considered as mash-ups of sensors and actuators) into the paradigm of ?Web of Things? has been the motivation of many recent works. A cutting-edge approach deals with developing and deploying web-enabled embedded devices with two major objectives: 1) to integrate sensor and actuator technologies into everyday objects, and 2) to allow a diversity of devices to plug to Internet. Currently, developers who want to use this Internet-oriented approach need have solid understanding about sensorial platforms and semantic technologies. In this paper we propose a Resource-Oriented and Ontology-Driven Development (ROOD) methodology, based on Model Driven Architecture (MDA), to facilitate to any developer the development and deployment of Smart Spaces. Early evaluations of the ROOD methodology have been successfully accomplished through a partial deployment of a Smart Hotel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actualmente, la Web provee un inmenso conjunto de servicios (WS-*, RESTful, OGC WFS), los cuales están normalmente expuestos a través de diferentes estándares que permiten localizar e invocar a estos servicios. Estos servicios están, generalmente, descritos utilizando información textual, sin una descripción formal, es decir, la descripción de los servicios es únicamente sintáctica. Para facilitar el uso y entendimiento de estos servicios, es necesario anotarlos de manera formal a través de la descripción de los metadatos. El objetivo de esta tesis es proponer un enfoque para la anotación semántica de servicios Web en el dominio geoespacial. Este enfoque permite automatizar algunas de las etapas del proceso de anotación, mediante el uso combinado de recursos ontológicos y servicios externos. Este proceso ha sido evaluado satisfactoriamente con un conjunto de servicios en el dominio geoespacial. La contribución principal de este trabajo es la automatización parcial del proceso de anotación semántica de los servicios RESTful y WFS, lo cual mejora el estado del arte en esta área. Una lista detallada de las contribuciones son: • Un modelo para representar servicios Web desde el punto de vista sintáctico y semántico, teniendo en cuenta el esquema y las instancias. • Un método para anotar servicios Web utilizando ontologías y recursos externos. • Un sistema que implementa el proceso de anotación propuesto. • Un banco de pruebas para la anotación semántica de servicios RESTful y OGC WFS. Abstract The Web contains an immense collection of Web services (WS-*, RESTful, OGC WFS), normally exposed through standards that tell us how to locate and invocate them. These services are usually described using mostly textual information and without proper formal descriptions, that is, existing service descriptions mostly stay on a syntactic level. If we want to make such services potentially easier to understand and use, we may want to annotate them formally, by means of descriptive metadata. The objective of this thesis is to propose an approach for the semantic annotation of services in the geospatial domain. Our approach automates some stages of the annotation process, by using a combination of thirdparty resources and services. It has been successfully evaluated with a set of geospatial services. The main contribution of this work is the partial automation of the process of RESTful and WFS semantic annotation services, what improves the current state of the art in this area. The more detailed list of contributions are: • A model for representing Web services. • A method for annotating Web services using ontological and external resources. • A system that implements the proposed annotation process. • A gold standard for the semantic annotation of RESTful and OGC WFS services, and algorithms for evaluating the annotations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet está evolucionando hacia la conocida como Live Web. En esta nueva etapa en la evolución de Internet, se pone al servicio de los usuarios multitud de streams de datos sociales. Gracias a estas fuentes de datos, los usuarios han pasado de navegar por páginas web estáticas a interacturar con aplicaciones que ofrecen contenido personalizado, basada en sus preferencias. Cada usuario interactúa a diario con multiples aplicaciones que ofrecen notificaciones y alertas, en este sentido cada usuario es una fuente de eventos, y a menudo los usuarios se sienten desbordados y no son capaces de procesar toda esa información a la carta. Para lidiar con esta sobresaturación, han aparecido múltiples herramientas que automatizan las tareas más habituales, desde gestores de bandeja de entrada, gestores de alertas en redes sociales, a complejos CRMs o smart-home hubs. La contrapartida es que aunque ofrecen una solución a problemas comunes, no pueden adaptarse a las necesidades de cada usuario ofreciendo una solucion personalizada. Los Servicios de Automatización de Tareas (TAS de sus siglas en inglés) entraron en escena a partir de 2012 para dar solución a esta liminación. Dada su semejanza, estos servicios también son considerados como un nuevo enfoque en la tecnología de mash-ups pero centra en el usuarios. Los usuarios de estas plataformas tienen la capacidad de interconectar servicios, sensores y otros aparatos con connexión a internet diseñando las automatizaciones que se ajustan a sus necesidades. La propuesta ha sido ámpliamante aceptada por los usuarios. Este hecho ha propiciado multitud de plataformas que ofrecen servicios TAS entren en escena. Al ser un nuevo campo de investigación, esta tesis presenta las principales características de los TAS, describe sus componentes, e identifica las dimensiones fundamentales que los defines y permiten su clasificación. En este trabajo se acuña el termino Servicio de Automatización de Tareas (TAS) dando una descripción formal para estos servicios y sus componentes (llamados canales), y proporciona una arquitectura de referencia. De igual forma, existe una falta de herramientas para describir servicios de automatización, y las reglas de automatización. A este respecto, esta tesis propone un modelo común que se concreta en la ontología EWE (Evented WEb Ontology). Este modelo permite com parar y equiparar canales y automatizaciones de distintos TASs, constituyendo un aporte considerable paraa la portabilidad de automatizaciones de usuarios entre plataformas. De igual manera, dado el carácter semántico del modelo, permite incluir en las automatizaciones elementos de fuentes externas sobre los que razonar, como es el caso de Linked Open Data. Utilizando este modelo, se ha generado un dataset de canales y automatizaciones, con los datos obtenidos de algunos de los TAS existentes en el mercado. Como último paso hacia el lograr un modelo común para describir TAS, se ha desarrollado un algoritmo para aprender ontologías de forma automática a partir de los datos del dataset. De esta forma, se favorece el descubrimiento de nuevos canales, y se reduce el coste de mantenimiento del modelo, el cual se actualiza de forma semi-automática. En conclusión, las principales contribuciones de esta tesis son: i) describir el estado del arte en automatización de tareas y acuñar el término Servicio de Automatización de Tareas, ii) desarrollar una ontología para el modelado de los componentes de TASs y automatizaciones, iii) poblar un dataset de datos de canales y automatizaciones, usado para desarrollar un algoritmo de aprendizaje automatico de ontologías, y iv) diseñar una arquitectura de agentes para la asistencia a usuarios en la creación de automatizaciones. ABSTRACT The new stage in the evolution of the Web (the Live Web or Evented Web) puts lots of social data-streams at the service of users, who no longer browse static web pages but interact with applications that present them contextual and relevant experiences. Given that each user is a potential source of events, a typical user often gets overwhelmed. To deal with that huge amount of data, multiple automation tools have emerged, covering from simple social media managers or notification aggregators to complex CRMs or smart-home Hub/Apps. As a downside, they cannot tailor to the needs of every single user. As a natural response to this downside, Task Automation Services broke in the Internet. They may be seen as a new model of mash-up technology for combining social streams, services and connected devices from an end-user perspective: end-users are empowered to connect those stream however they want, designing the automations they need. The numbers of those platforms that appeared early on shot up, and as a consequence the amount of platforms following this approach is growing fast. Being a novel field, this thesis aims to shed light on it, presenting and exemplifying the main characteristics of Task Automation Services, describing their components, and identifying several dimensions to classify them. This thesis coins the term Task Automation Services (TAS) by providing a formal definition of them, their components (called channels), as well a TAS reference architecture. There is also a lack of tools for describing automation services and automations rules. In this regard, this thesis proposes a theoretical common model of TAS and formalizes it as the EWE ontology This model enables to compare channels and automations from different TASs, which has a high impact in interoperability; and enhances automations providing a mechanism to reason over external sources such as Linked Open Data. Based on this model, a dataset of components of TAS was built, harvesting data from the web sites of actual TASs. Going a step further towards this common model, an algorithm for categorizing them was designed, enabling their discovery across different TAS. Thus, the main contributions of the thesis are: i) surveying the state of the art on task automation and coining the term Task Automation Service; ii) providing a semantic common model for describing TAS components and automations; iii) populating a categorized dataset of TAS components, used to learn ontologies of particular domains from the TAS perspective; and iv) designing an agent architecture for assisting users in setting up automations, that is aware of their context and acts in consequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, there has been a wide development in the research on textual information systems. The goal is to improve these systems in order to allow an easy localization, treatment and access to the information stored in digital format (Digital Databases, Documental Databases, and so on). There are lots of applications focused on information access (for example, Web-search systems like Google or Altavista). However, these applications have problems when they must access to cross-language information, or when they need to show information in a language different from the one of the query. This paper explores the use of syntactic-sematic patterns as a method to access to multilingual information, and revise, in the case of Information Retrieval, where it is possible and useful to employ patterns when it comes to the multilingual and interactive aspects. On the one hand, the multilingual aspects that are going to be studied are the ones related to the access to documents in different languages from the one of the query, as well as the automatic translation of the document, i.e. a machine translation system based on patterns. On the other hand, this paper is going to go deep into the interactive aspects related to the reformulation of a query based on the syntactic-semantic pattern of the request.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the Sm4RIA Extension for OIDE, which implements the Sm4RIA approach in OIDE (OOH4RIA Integrated Development Environment). The application, based on the Eclipse framework, supports the design of the Sm4RIA models as well as the model-to-model and model-to-text transformation processes that facilitate the generation of Semantic Rich Internet Applications, i.e., RIA applications capable of sharing data as Linked data and consuming external data from other sources in the same manner. Moreover, the application implements mechanisms for the creation of RIA interfaces from ontologies and the automatic generation of administration interfaces for a previously design application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of the proposed approach presented in this paper is to improve Web information retrieval effectiveness by overcoming the problems associated with a typical keyword matching retrieval system, through the use of concepts and an intelligent fusion of confidence values. By exploiting the conceptual hierarchy of the WordNet (G. Miller, 1995) knowledge base, we show how to effectively encode the conceptual information in a document using the semantic information implied by the words that appear within it. Rather than treating a word as a string made up of a sequence of characters, we consider a word to represent a concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

False friends are pairs of words in two languages that are perceived as similar but have different meanings. We present an improved algorithm for acquiring false friends from sentence-level aligned parallel corpus based on statistical observations of words occurrences and co-occurrences in the parallel sentences. The results are compared with an entirely semantic measure for cross-lingual similarity between words based on using the Web as a corpus through analyzing the words’ local contexts extracted from the text snippets returned by searching in Google. The statistical and semantic measures are further combined into an improved algorithm for identification of false friends that achieves almost twice better results than previously known algorithms. The evaluation is performed for identifying cognates between Bulgarian and Russian but the proposed methods could be adopted for other language pairs for which parallel corpora and bilingual glossaries are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic publishing exploits numerous possibilities to present or exchange information and to communicate via most current media like the Internet. By utilizing modern Web technologies like Web Services, loosely coupled services, and peer-to-peer networks we describe the integration of an intelligent business news presentation and distribution network. Employing semantics technologies enables the coupling of multinational and multilingual business news data on a scalable international level and thus introduce a service quality that is not achieved by alternative technologies in the news distribution area so far. Architecturally, we identified the loose coupling of existing services as the most feasible way to address multinational and multilingual news presentation and distribution networks. Furthermore we semantically enrich multinational news contents by relating them using AI techniques like the Vector Space Model. Summarizing our experiences we describe the technical integration of semantics and communication technologies in order to create a modern international news network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malapropism is a semantic error that is hardly detectable because it usually retains syntactical links between words in the sentence but replaces one content word by a similar word with quite different meaning. A method of automatic detection of malapropisms is described, based on Web statistics and a specially defined Semantic Compatibility Index (SCI). For correction of the detected errors, special dictionaries and heuristic rules are proposed, which retains only a few highly SCI-ranked correction candidates for the user’s selection. Experiments on Web-assisted detection and correction of Russian malapropisms are reported, demonstrating efficacy of the described method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^