966 resultados para Secularization - Religious Transit - Pentecostalism - Assembly of God Religious Identities
Resumo:
The core oligosaccharide Glc3Man9GlcNAc2 is assembled at the membrane of the endoplasmic reticulum on the lipid carrier dolichyl pyrophosphate and transferred to selected asparagine residues of nascent polypeptide chains. This transfer is catalyzed by the oligosaccharyl transferase complex. Based on the synthetic phenotype of the oligosaccharyl transferase mutation wbp1 in combination with a deficiency in the assembly pathway of the oligosaccharide in Saccharomyces cerevisiae, we have identified the novel ALG9 gene. We conclude that this locus encodes a putative mannosyl transferase because deletion of the gene led to accumulation of lipid-linked Man6GlcNAc2 in vivo and to hypoglycosylation of secreted proteins. Using an approach combining genetic and biochemical techniques, we show that the assembly of the lipid-linked core oligosaccharide in the lumen of the endoplasmic reticulum occurs in a stepwise fashion.
Resumo:
We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.
Resumo:
Bacterial adhesion to other bacteria, to eukaryotic cells, and to extracellular matrix proteins is frequently mediated by cell surface-associated polymers (fimbriae) consisting of one or more subunit proteins. We have found that polymerization of curlin to fimbriae-like structures (curli) on the surface of Escherichia coli markedly differs from the prevailing model for fimbrial assembly in that it occurs extracellularly through a self-assembly process depending on a specific nucleator protein. The cell surface-bound nucleator primes the polymerization of curlin secreted by the nucleator-presenting cell or by adjacent cells. The addition of monomers to the growing filament seems to be driven by mass action and guided only by the diffusion gradient between the source of secreted monomer and the surface of monomer condensation.
Resumo:
Aromatic polyketides are assembled by a type 11 (iterative) polyketide synthase (PKS) in bacteria. Understanding the enzymology of such enzymes should provide the information needed for the synthesis of novel polyketides through the genetic engineering of PKSs. Using a previously described cell-free system [B.S. & C.R.H. (1993) Science 262, 1535-1540], we studied a PKS enzyme whose substrate is not directly available and purified the TcmN polyketide cyclase from Streptomyces glaucescens. TcmN is a bifunctional protein that catalyzes the regiospecific cyclization of the Tcm PKS-bound linear decaketide to Tcm F2 and the 0-methylation of Tcm D3 to Tcm B3. In the absence of TcmN, the decaketide formed by the minimal PKS consisting of the TcmJKLM proteins undergoes spontaneous cyclization to form some Tcm F2 as well as SEK15 and many other aberrant shunt products. Addition of purified TcmN to a mixture of the other Tcm PKS components both restores and enhances Tcm F2 production. Interestingly, Tcm F2 but none of the aberrant products was bound tightly to the PKS. The results described support the notion that the polyketide cyclase, not the minimal PKS, dictates the regiospecificity for the cyclization of the linear polyketide intermediate. Furthermore, because the addition of TcmN to the TcmJKLM proteins results in a significant increase of the total yield of decaketide, interactions among the individual components of the Tcm PKS complex must give rise to the optimal PKS activity.
Resumo:
Cu(II) ions have been reacted with a 1/1 mixture of two linear ligands, one containing three 2,2'- bipyridine groups and the other three 2,2':6',2"-terpyridine groups. Absorption spectroscopy and fast atom bombardment mass spectrometry indicate the formation of a trinuclear complex containing one ligand of each kind. Determination of the crystal structure of this compound has confirmed that it is indeed a linear trinuclear complex in which two different ligands are wrapped in a helical fashion around the pentacoordinated metal ions. The central coordination geometry is trigonal bipyramidal; the two lateral Cu(II) ions are in a square pyramidal environment. Thus, a heteroduplex helicate is formed by the self-assembly of two different ligand strands and three specific metal ions induced by the coordination number and geometry of the latter. The self-assembly process may be considered to result from the reading of the steric and binding information present in the two ligands by Cu(II) ions through a pentacoordination algorithm. The same ligands have been shown earlier to yield homoduplex helicates from ions of tetrahedral and octahedral coordination geometry and strands of bidentate bipyridines and tridentate terpyridines, respectively. These two types of artificial double helical species may be related on one hand to the natural homoduplex nucleic acids and on the other hand to the DNA:RNA heteroduplex.
Resumo:
A calix[4]arene was designed to reversibly dimerize and form an egg-shaped enclosure. Adhesive interactions in the assembly were provided by four self-associating ureas, which form a cyclic array containing 16 hydrogen bonds. The synthesis was completed in four steps from the previously described O,O',O",O"'-tetrabenzylcalix[4]arene. Evidence for dimerization of the calixarene tetraurea was provided by H NMR, mass spectrometry, and the observation of encapsulated molecules. The resulting cavity was of sufficient size to capture guests such as ethyl benzene and p-xylene.
Resumo:
To ascertain the mechanism by which nucleosomes are assembled by factors derived from Drosophila embryos, two proteins termed Drosophila chromatin assembly factors (CAFs) 1 and 4 (dCAF-1 and dCAF-4) were fractionated and purified from a Drosophila embryo extract. The assembly of chromatin by dCAF-1, dCAF-4, purified histones, ATP, and DNA is a process that generates regularly spaced nucleosomal arrays with a repeat length that resembles that of bulk native Drosophila chromatin and is not obligatorily coupled to DNA replication. The assembly of chromatin by dCAF-1 and dCAF-4 is nearly complete within 10 min. The dCAF-1 activity copurified with the Drosophila version of chromatin assembly factor-1 (CAF-1), a factor that has been found to be required for the assembly of chromatin during large tumor (T) antigen-mediated, simian virus 40 (SV40) origin-dependent DNA replication. The dCAF-4 activity copurified with a 56-kDa core-histone-binding protein that was purified to > 90% homogeneity.
Resumo:
Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression.
Resumo:
Injection of min K mRNA into Xenopus oocytes results in expression of slowly activating voltage-dependent potassium channels, distinct from those induced by expression of other cloned potassium channels. The min K protein also differs in structure, containing only a single predicted transmembrane domain. While it has been demonstrated that all other cloned potassium channels form by association of four independent subunits, the number of min K monomers which constitute a functional channel is unknown. In rat min K, replacement of Ser-69 by Ala (S69A) causes a shift in the current-voltage (I-V) relationship to more depolarized potentials; currents are not observed at potentials negative to 0 mV. To determine the subunit stoichiometry of min K channels, wild-type and S69A subunits were coexpressed. Injections of a constant amount of wild-type mRNA with increasing amounts of S69A mRNA led to potassium currents of decreasing amplitude upon voltage commands to -20 mV. Applying a binomial distribution to the reduction of current amplitudes as a function of the different coinjection mixtures yielded a subunit stoichiometry of at least 14 monomers for each functional min K channel. A model is presented for how min K subunits may form a channel.
Resumo:
One of the hallmarks of Alzheimer disease is the pathological aggregation of tau protein into paired helical filaments (PHFs) and neurofibrillary tangles. Here we describe the in vitro assembly of recombinant tau protein and constructs derived from it into PHFs. Though whole tau assembled poorly, constructs containing three internal repeats (corresponding to the fetal tau isoform) formed PHFs reproducibly. This ability depended on intermolecular disulfide bridges formed by the single Cys-322. Blocking the SH group, mutating Cys for Ala, or keeping tau in a reducing environment all inhibited assembly. With constructs derived from four-repeat tau (having the additional repeat no. 2 and a second Cys-291), PHF assembly was blocked because Cys-291 and Cys-322 interact within the molecule. PHF assembly was enabled again by mutating Cys-291 for Ala. The synthetic PHFs bound the dye thioflavin S used in Alzheimer disease diagnostics. The data imply that the redox potential in the neuron is crucial for PHF assembly, independently or in addition to pathological phosphorylation reactions.
Resumo:
We have previously shown that protein phosphorylation plays an important role in the sorting and assembly of tight junctions. We have now examined in detail the role of protein kinases in intercellular junction biogenesis by using a combination of highly specific and broad-spectrum inhibitors that act by independent mechanisms. Our data indicate that protein kinase C (PKC) is required for the proper assembly of tight junctions. Low concentrations of the specific inhibitor of PKC, calphostin C, markedly inhibited development of transepithelial electrical resistance, a functional measure of tight-junction biogenesis. The effect of PKC inhibitors on the development of tight junctions, as measured by resistance, was paralleled by a delay in the sorting of the tight-junction protein, zona occludens 1 (ZO-1), to the tight junction. The assembly of desmosomes and the adherens junction were not detectably affected, as determined by immunocytochemical analysis. In addition, ZO-1 was phosphorylated subsequent to the initiation of cell-cell contact, and treatment with calphostin C prevented approximately 85% of the phosphorylation increase. Furthermore, in vitro measurements indicate that ZO-1 may be a direct target of PKC. Moreover, membrane-associated PKC activity more than doubled during junction assembly, and immunocytochemical analysis revealed a pool of PKC zeta that appeared to colocalize with ZO-1 at the tight junction. A preformed complex containing ZO-1, ZO-2, p130, as well as 330- and 65-kDa phosphoproteins was detected by coimmunoprecipitation in both the presence and absence of cell-cell contact. Identity of the 330- and 65-kDa phosphoproteins remains to be determined, but the 65-kDa protein may be occludin. The mass of this complex and the incorporation of ZO-1 into the Triton X-100-insoluble cytoskeleton were not PKC dependent.
Resumo:
The Escherichia coli rpoB gene, which codes for the 1342-residue beta subunit of RNA polymerase (RNAP), contains two dispensable regions centered around codons 300 and 1000. To test whether these regions demarcate domains of the RNAP beta subunit, fragments encoded by segments of rpoB flanking the dispensable regions were individually overexpressed and purified. We show that these beta-subunit polypeptide fragments, when added with purified recombinant beta', sigma, and alpha subunits of RNAP, reconstitute a functional enzyme in vitro. These results demonstrate that the beta subunit is composed of at least three distinct domains and open another avenue for in vitro studies of RNAP assembly and structure.
Resumo:
Rhodopsin folding and assembly were investigated by expression of five bovine opsin gene fragments separated at points corresponding to proteolytic cleavage sites in the second or third cytoplasmic regions. The CH(1-146) and CH(147-348) gene fragments encode amino acids 1-146 and 147-348 of opsin, while the TH(1-240) and TH(241-348) gene fragments encode amino acids 1-240 and 241-348, respectively. Another gene fragment, CT(147-240), encodes amino acids 147-240. All five opsin polypeptide fragments were stably produced upon expression of the corresponding gene fragments in COS-1 cells. The singly expressed polypeptide fragments failed to form a chromophore with 11-cis-retinal, whereas coexpression of two or three complementary fragments [CH(1-146) + CH(147-348), TH(1-240) + TH(241-348), or CH(1-146) + CT(147-240) + TH(241-348)] formed pigments with spectral properties similar to wild-type rhodopsin. The NH2-terminal polypeptide in these rhodopsins showed a glycosylation pattern characteristic of wild-type COS-1 cell rhodopsin and was noncovalently associated with its complementary fragment(s). Further, the CH(1-146) + CH(147-348) rhodopsin showed substantial light-dependent activation of transducin. We conclude that the functional assembly of rhodopsin is mediated by the association of at least three protein-folding domains.