840 resultados para Schuyler, Philippa Duke.
Resumo:
The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268±28 g/l) compared with control healthy subjects (mean 131±10 g/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150g/l) compared with human serum (median 6g/l) or human milk (median 25g/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate.
Resumo:
The concentrations of five esters of p-hydroxybenzoic acid (parabens) were measured using HPLC-MS/MS at four serial locations across the human breast from axilla to sternum using human breast tissue collected from 40 mastectomies for primary breast cancer in England between 2005 and 2008. One or more paraben esters were quantifiable in 158/160 (99%) of the tissue samples and in 96/160 (60%) all five esters were measured. Variation was notable with respect to individual paraben esters, location within one breast and similar locations in different breasts. Overall median values in nanograms per gram tissue for the 160 tissue samples were highest for n-propylparaben [16.8 (range 0–2052.7)] and methylparaben [16.6 (range 0–5102.9)]; levels were lower for n-butylparaben [5.8 (range 0–95.4)], ethylparaben [3.4 (range 0–499.7)] and isobutylparaben 2.1 (range 0–802.9). The overall median value for total paraben was 85.5 ng g−1 tissue (range 0–5134.5). The source of the paraben cannot be identified, but paraben was measured in the 7/40 patients who reported never having used underarm cosmetics in their lifetime. No correlations were found between paraben concentrations and age of patient (37–91 years), length of breast feeding (0–23 months), tumour location or tumour oestrogen receptor content. In view of the disproportionate incidence of breast cancer in the upper outer quadrant, paraben concentrations were compared across the four regions of the breast: n-propylparaben was found at significantly higher levels in the axilla than mid (P = 0.004 Wilcoxon matched pairs) or medial (P = 0.021 Wilcoxon matched pairs) regions (P = 0.010 Friedman ANOVA).
Resumo:
Forest soils account for a large part of the stable carbon pool held in terrestrial ecosystems. Future levels of atmospheric CO2 are likely to increase C input into the soils through increased above- and below-ground production of forests. This increased input will result in greater sequestration of C only if the additional C enters stable pools. In this review, we compare current observations from four large-scale Free Air FACE Enrichment (FACE) experiments on forest ecosystems (EuroFACE, Aspen-FACE, Duke FACE and ORNL-FACE) and consider their predictive power for long-term C sequestration. At all sites, FACE increased fine root biomass, and in most cases higher fine root turnover resulted in higher C input into soil via root necromass. However, at all sites, soil CO2 efflux also increased in excess of the increased root necromass inputs. A mass balance calculation suggests that a large part of the stimulation of soil CO2 efflux may be due to increased root respiration. Given the duration of these experiments compared with the life cycle of a forest and the complexity of processes involved, it is not yet possible to predict whether elevated CO2 will result in increased C storage in forest soil.
Resumo:
Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor α (ERα) and ERβ and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells.
Resumo:
Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10-4 M methylparaben, 10–5 M n-propylparaben or 10–5 M n-butylparaben resulted in a greater number of colonies per dish (P < 0.05 in each case) and an increased average colony size (P < 0.001 in each case). Dose-responses showed that concentrations as low as 10–6 M methylparaben, 10–7 M n-propylparaben and 10–7 M n-butylparaben could increase colony numbers (P = 0.016, P = 0.010, P = 0.008, respectively): comparison with a recent measurement of paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis.
Resumo:
This article explores the bilingual and bicultural identity of Normandy revealed by Wace's depiction of Duke Richard the Fearless in the Roman de Rou. The anecdotes that open the Troisieme Partie of the Rou are analysed in the light of Scandinavian analogues, in particular the Saga of Grettir. This allows us to discern in Wace's stories a dual tradition, with romance and scandinavian strands that were not always mutually compatible, resulting in narrative tensions that had hitherto remained unexplained. In particular, the fearless duke takes on connotations of mental instability that would only have been recognised by the Normans of Danish origin.
Resumo:
Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.
Resumo:
The incidence of breast cancer has risen worldwide to unprecedented levels in recent decades, making it now the major cancer of women in many parts of the world.1 Although diet, alcohol, radiation and inherited loss of BRCA1/2 genes have all been associated with increased incidence, the main identified risk factors are life exposure to hormones including physiological variations associated with puberty/pregnancy/menopause,1 personal choice of use of hormonal contraceptives2 and/or hormone replacement therapy.3–6 On this basis, exposure of the human breast to the many environmental pollutant chemicals capable of mimicking or interfering with oestrogen action7 should also be of concern.8 Hundreds of such environmental chemicals have now been measured in human breast tissue from a range of dietary and domestic exposure sources7 ,9 including persistent organochlorine pollutants (POPs),10 polybrominated diphenylethers and polybromobiphenyls,11 polychlorinated biphenyls,12 dioxins,13 alkyl phenols,14 bisphenol-A and chlorinated derivatives,15 as well as other less lipophilic compounds such as parabens (alkyl esters of p-hydroxybenzoic acid),16 but studies investigating any association between raised levels of such compounds and the development of breast cancer remain inconclusive.7–16 However, the functionality of these chemicals has continued to be assessed on the basis of individual chemicals rather than the environmental reality of long-term low-dose exposure to complex mixtures. This misses the potential for individuals to have high concentrations of different compounds but with a common mechanism of action. It also misses the complex interactions between chemicals and physiological hormones which together may act to alter the internal homeostasis of the oestrogenic environment of mammary tissue.
Resumo:
The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50th percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.
Resumo:
An individual’s affective style is influenced by many things, including the manner in which an individual responds to an emotional challenge. Emotional response is composed of a number of factors, two of which are the initial reactivity to an emotional stimulus and the subsequent recovery once the stimulus terminates or ceases to be relevant. However, most neuroimaging studies examining emotional processing in humans focus on the magnitude of initial reactivity to a stimulus rather than the prolonged response. In this study, we use functional magnetic resonance imaging to study the time course of amygdala activity in healthy adults in response to presentation of negative images. We split the amygdala time course into an initial reactivity period and a recovery period beginning after the offset of the stimulus. We find that initial reactivity in the amygdala does not predict trait measures of affective style. Conversely, amygdala recovery shows predictive power such that slower amygdala recovery from negative images predicts greater trait neuroticism, in addition to lower levels of likability of a set of social stimuli (neutral faces). These data underscore the importance of taking into account temporal dynamics when studying affective processing using neuroimaging.
Resumo:
Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8m pores of a membrane using xCELLigence technology. Long-term exposure (37weeks) to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast.
Resumo:
This review examines recent evidence linking exposure to aluminium with the aetiology of breast cancer. The human population is exposed to aluminium throughout daily life including through diet, application of antiperspirants, use of antacids and vaccination. Aluminium has now been measured in a range of human breast structures at higher levels than in blood serum and experimental evidence suggests that the tissue concentrations measured have the potential to adversely influence breast epithelial cells including generation of genomic instability, induction of anchorage-independent proliferation and interference in oestrogen action. The presence of aluminium in the human breast may also alter the breast microenvironment causing disruption to iron metabolism, oxidative damage to cellular components, inflammatory responses and alterations to the motility of cells. The main research need is now to investigate whether the concentrations of aluminium measured in the human breast can lead in vivo to any of the effects observed in cells in vitro and this would be aided by the identification of biomarkers specific for aluminium action.