999 resultados para Sand waves.
Resumo:
A programme of research on the seismic behaviour of retaining walls has been under way at Cambridge since 1981. Centrifuge tests have presently been conducted both on cantilever walls and isolated mass walls, retaining dry sands of varying grading and density. This paper is devoted to the modelling of fixed-base cantilever walls retaining Leighton Buzzard (14/25) sand of relative density 99% with a horizontal surface level with the crest of the wall. The base of the centrifuge container was used to fix the walls, and to provide a rigid lower boundary for the sand. No attempt was made to inhibit the propagation of compression waves from the side of the container opposite the inside face of the model wall. The detailed analysis of dynamic deflections and bending moments was made difficult by the anelastic nature of reinforced concrete, and the difficulty of measuring bending strains thereon. A supplementary programme of well-instrumented tests on Dural walls of similar stiffness, including the modelling of models, was therefore carried out. Refs.
Resumo:
The soil-pipeline interactions under lateral and upward pipe movements in sand are investigated using DEM analysis. The simulations are performed for both medium and dense sand conditions at different embedment ratios of up to 60. The comparison of peak dimensionless forces from the DEM and earlier FEM analyses shows that, for medium sand, both methods show similar peak dimensionless forces. For dense sand, the DEM analysis gives more gradual transition of shallow to deep failure mechanisms than the FEM analysis and the peak dimensionless forces at very deep depth are higher in the DEM analysis than in the FEM analysis. Comparison of the deformation mechanism suggests that this is due to the differences in soil movements around the pipe associated with its particulate nature. The DEM analysis provides supplementary data of the soil-pipeline interaction in sand at deep embedment condition.
Resumo:
The phenomenon of fracturing in sand as a result of compensation grouting was studied. Processes of fracture initiation and propagation were explained and a parametric study was conducted in order to investigate the factors that cause sand fracturing to occur. Experimental results indicate that fracture initiation requires the existence of a local inhomogeneity around the injection position. Grout mixture in terms of water-cement ratio and fines content had major roles in sand fracturing, whereas injection rate had a minor influence under the tested conditions. © 2009 Taylor & Francis Group.
Resumo:
Saturated sands particularly at low relative density commonly exhibit rises in excess pore pressure when subjected to earthquake loading. The excess pore pressure can approach a maximum value, limited by the initial vertical effective stress. After the completion of earthquake shaking, these excess pore pressures dissipate according to the consolidation equation, which can be solved to produce a Fourier series solution. It will be shown by manipulation of this Fourier series that excess pore pressure traces provide a method for back-calculation of coefficient of consolidation Cv. This method is validated against dissipation curves generated using known values of C v and seen to be more accurate in the middle of the layer. The method is then applied to data recorded in centrifuge tests to evaluate Cv throughout the reconsolidation process following liquefaction conditions. C v is seen to fit better as a function of excess pore pressure ratio than effective stress for the stress levels considered. For the soil investigated, Cv is about three times smaller at excess pore pressure ratio of 0.9 compared to excess pore pressure ratio of 0. Copyright © 1996-2011 ASTM.
Resumo:
In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling). In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature.The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990), it has been assumed that the fluidised gas-particle medium is isothermal.The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990). Their assumption that the system is isothermal also appears to be valid.
Resumo:
In this study an experimental investigation of baroclinic waves in air in a differentially heated rotating annulus is presented. Air has a Prandtl number of 0.707, which falls within a previously unexplored region of parameter space for baroclinic instability. The flow regimes encountered include steady waves, periodic amplitude vacillations, modulated amplitude vacillations, and either monochromatic or mixed wave number weak waves, the latter being characterized by having amplitudes less than 5% of the applied temperature contrast. The distribution of these flow regimes in parameter space are presented in a regime diagram. It was found that the progression of transitions between different regimes is, as predicted by recent numerical modeling results, in the opposite sense to that usually found in experiments with high Prandtl number liquids. No hysteresis in the flow type, with respect to variations in the rotation rate, was found in this investigation.
Resumo:
Frequency entrainment and nonlinear synchronization are commonly observed between simple oscillatory systems, but their occurrence and behavior in continuum fluid systems are much less well understood. Motivated by possible applications to geophysical fluid systems, such as in atmospheric circulation and climate dynamics, we have carried out an experimental study of the interaction of fully developed baroclinic instability in a differentially heated, rotating fluid annulus with an externally imposed periodic modulation of the thermal boundary conditions. In quasiperiodic and chaotic amplitude-modulated traveling wave regimes, the results demonstrate a strong interaction between the natural periodic modulation of the wave amplitude and the externally imposed forcing. This leads to partial or complete phase synchronization. Synchronization effects were observed even with very weak amplitudes of forcing, and were found with both 1:1 and 1:2 frequency ratios between forcing and natural oscillations.
Resumo:
This paper investigates the interaction of solitary waves (representative of tsunamis) with idealized flat-topped conical islands. The investigation is based on simulations produced by a numerical model that solves the two-dimensional Boussinesq-type equations of Madsen and Sørensen using a total variation diminishing Lax-Wendroff scheme. After verification against published laboratory data on solitary wave run-up at a single island, the numerical model is applied to study the maximum run-up at a pair of identical conical islands located at different spacings apart for various angles of wave attack. The predicted results indicate that the maximum run-up can be attenuated or enhanced according to the position of the second island because of wave refraction, diffraction, and reflection. It is also observed that the local wave height and hence run-up can be amplified at certain gap spacing between the islands, owing to the interference between the incident waves and the reflected waves between islands. © 2012 American Society of Mechanical Engineers.
Resumo:
This paper follows the work of A.V. Shanin on diffraction by an ideal quarter-plane. Shanin's theory, based on embedding formulae, the acoustic uniqueness theorem and spherical edge Green's functions, leads to three modified Smyshlyaev formulae, which partially solve the far-field problem of scattering of an incident plane wave by a quarter-plane in the Dirichlet case. In this paper, we present similar formulae in the Neumann case, and describe a numerical method allowing a fast computation of the diffraction coefficient using Shanin's third modified Smyshlyaev formula. The method requires knowledge of the eigenvalues of the Laplace-Beltrami operator on the unit sphere with a cut, and we also describe a way of computing these eigenvalues. Numerical results are given for different directions of incident plane wave in the Dirichlet and the Neumann cases, emphasising the superiority of the third modified Smyshlyaev formula over the other two. © 2011 Elsevier B.V.
Guided propagation of surface acoustic waves and piezoelectric field enhancement in ZnO/GaAs systems
Resumo:
The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.