977 resultados para Sampling Time Deviation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology of experimental simulation of state of spent nuclear fuel that occurs on the sea floor due to some catastrophes or dumping is developed. Data on long-term (more than 2000 days) experiments on estimation of 85Kr and 137Cs release rate from spent nuclear fuel (fragments of irradiated UO2 pellets) were firstly obtained; these estimates prove correctness of a hypothesis offered by us in early 1990s concerning to earlier 85Kr release (by one order of magnitude higher than that of 137Cs) as compared to other fission fragments in case of loss of integrity of fuel containment as a result of corrosion on the sea floor. A method and technique of onboard 85Kr and 137Cs sampling and extraction (as well as sampling of tritium, product of triple 235U fission) and their radiometric analysis at coastal laboratories are developed. Priority data on 85Kr background in bottom layers of the Barents and Kara Seas and 137Cs and 3H in these seas (state of 2003) are presented. Models necessary for estimation of dilution of fission products of spent nuclear fuel and their transport on the floor in accident and dumping regions are developed. An experimental method for examination of state of spent nuclear fuel on the sea floor (one expedition each 2-3 years) by 85Kr release into environment (a leak tracer) is proposed; this release is an indicator of destruction of fuel containment and release of products of spent nuclear fuel in case of 235UO2 corrosion in sea water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern planktonic foraminifera collected with a sediment trap and subfossil assemblages from surface sediments from Galway Mound in the Porcupine Seabight off southwestern Ireland, northeastern Atlantic, were studied to show recent assemblage variations. The sediment trap operated from April to August 2004 and covers the spring bloom and early summer conditions with sampling intervals of 8 days. Eleven different species were recorded. Glorotalia hirsuta, Turborotalita quinqueloba and Globigerinita glutinata appeared predominately in spring. Neogloboquadrina incompta, Globigerina bulloides and Globorotalia inflata were abundant in spring and summer. The highest foraminiferal tests flux occured in June. The faunal composition was similar to subfossil assemblages from surface sediments, but the species proportions were different. This was mainly affected by the subtropical G. hirsuta, which was frequent in 2004 and rare in surface sediment samples and in earlier plankton collections from the southern Porcupine Seabight that were performed during the 1990s. The weight of deposited foraminifera is mainly influenced by spring bloom as indicated by sea-surface chlorophyll-a data. The top three-ranked species, G. hirsuta, N. incompta and G. bulloides contributed 87 % to the foraminiferal carbonate flux at Galway Mound. Foraminiferal carbonate and shell flux as well as the shell size revealed variations, which are related to lunar periodicity. The data infer a lunar pacing of reproduction for the main species as well as for G. glutinata and G. inflata, which was not recorded before.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neodymium isotopes and concentrations from 11 stations in the Caribbean, Gulf of Mexico, Florida Straits and close to the mouth of the Orinoco. CTD data (potential temperature, salinity, potential density and oxygen concentration) for the same samples are also reported. Sampling took place during February and March 2009 as part of the Meteor Cruise 78, Leg 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

99Tc levels were measured in seawater samples collected between 2000 and 2002 in the West Spitsbergen Current (WSC) and along the western coast of Svalbard or Spitzbergen and compared with available oceanographic 3-D modelling results for the late 1990s. Additional data from related regions are also presented in order to support the data interpretation. The seawater in the Arctic fjord Kongsfjorden on the western coast of Svalbard is influenced by the WSC, as shown by the 99Tc levels in surface water. By means of the WSC, 99Tc reaches the Eastern Fram Strait, where one branch of the WSC turns west into the East Greenland Current (EGC), and another branch continues northwards into the Arctic Ocean. Surface seawater collected in the central part of the WSC during a cruise on board the R/V "Polarstern" in the summer of 2000, showed higher levels of 99Tc than samples measured in Kongsfjorden in the spring of 2000. However, all levels measured in surface water are of the same order of magnitude. Data from sampling of deeper water in the WSC and EGC provide information pertaining to the lateral distribution of 99Tc. In all vertical profiling surveys (conducted in spring and summer), the highest levels of 99Tc were found in surface water. Comparison with oceanographic 3-D modelling indicates both significant seasonal variations in the lateral stratification of the WSC and variations with depth over shorter vertical distances. This information can be applied in sampling strategies, environmental monitoring, long-range transport of pollutants and physical oceanography.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic char (Salvelinus alpinus L.), the top predator in High Arctic lakes, often is used as a bioindicator of Hg contamination in Arctic aquatic ecosystems. The present study investigated effects of trophic position, size, and age of Arctic char in Lake Hazen, the largest lake in the Canadian High Arctic (81°50'N, 70°25'W), on Hg bioaccumulation. In addition, several essential (Se, K) and nonessential elements (Tl, Cs) in char muscle tissue were examined to compare their behavior to that of Hg. Trophic position of Arctic char was identified by stable isotope (d15N) signature. Temporal trends of Hg from seven sampling campaigns over a 16-year period (1990-2006) were investigated for the overall data and for one trophic class. Concentrations of Hg were not correlated with age but were positively related to fork length and trophic position. Large char with greater d15N signatures (>12 per mil) had larger Hg concentrations (0.09-1.63 µg/g wet wt) than small char with smaller d15N signatures (<12 per mil, 0.03-0.32 µg/g wet wt), indicating that Hg concentrations increased with trophic position. Nonessential Cs and Tl showed relationships to age, length, and trophic position similar to those of Hg, indicating their potential to bioaccumulate and biomagnify. Essential Se and K did not show these relationships. Concentrations of Hg were adjusted using d15N, leading to less within-year variability and a more consistent temporal trend. The d15N-adjusted trend showed no decline of Hg in Arctic char from Lake Hazen (1990-2006) in the overall data set and in the small morphotype. Trends for the same period before the adjustment were not significant for the overall data set, but a slight decrease was apparent in the small morphotype. The results confirm the need to consider trophic position and fish size when monitoring temporal trends of Hg, particularly for species with different morphotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However, because the species so far reported have all been migratory, it has not been demonstrated conclusively whether locally elevated contamination represents transport from lower latitudes by the migrating birds or, alternatively, redistribution and concentration of contaminants that were already present in the high-latitude environments. The present study demonstrates, for the first time, that several POPs are present in elevated concentrations in an environment frequented by a non-migratory species (Adelie penguins) that spends its entire life in the Antarctic. Levels of POPs, such as p,p'-DDE, hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs), were 10 to 100-fold higher in soil samples from penguin colonies than from reference areas. This significant difference is likely related to local penguin activity, such as a higher abundance of guano and the presence of bird carcasses. This hypothesis is also supported by a higher percentage of persistent congeners (PCB 99, 118, 138 and 153) in the soil from the colonies compared to the reference areas. This profile of PCB congeners closely matched profiles seen in penguin eggs or penguin blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains four time series of particulate and dissolved soil nitrogen measurements from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Total nitrogen from solid phase: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. In 2002 five samples per plot were taken and analyzed independently. Averaged values per depth layer are reported. In later years, three samples per plot were taken, pooled in the field, and measured as a combined sample. Sampling locations were less than 30 cm apart from sampling locations in other years. All soil samples were passed through a sieve with a mesh size of 2 mm in 2002. In later years samples were further sieved to 1 mm. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). 2. Total nitrogen from solid phase (high intensity sampling): In block 2 of the Jena Experiment, soil samples were taken to a depth of 1m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling but were always analyzed independently and never pooled. 3. Mineral nitrogen from KCl extractions: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m (and between 2002 and 2004 also at a depth of 0.15 to 0.3 m) of the mineral soil from each of the experimental plots at various times over the years. In addition also plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled in some later years. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, 2003-2005: Skalar, Breda, Netherlands; 2006-2007: AutoAnalyzer, Seal, Burgess Hill, United Kingdom). 4. Dissolved nitrogen in soil solution: Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-), ammonium (NH4+) and total dissolved nitrogen concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+).