970 resultados para STAR-FORMATION HISTORY
Resumo:
Background Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdhex4/5 huntingtin deficient embryos. Results In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Conclusion Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease.
Understanding the mechanisms of graft union formation in solanaceae plants using in vitro techniques
Resumo:
Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 × 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor-γ coactivator-1α (ET ∼8.5-fold, ST ∼10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET ∼26-fold, ST ∼39-fold), vascular endothelial growth factor (VEGF; ET ∼4.5-fold, ST ∼4-fold), and muscle atrophy F-box protein (MAFbx) (ET ∼2-fold, ST ∼0.4-fold) mRNA increased in both groups, whereas MyoD (∼3-fold), myogenin (∼0.9-fold), and myostatin (∼2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (∼7-fold, P < 0.01) and MyoD (∼0.7-fold) increased, whereas MAFbx (∼0.7-fold) and myostatin (∼0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.