959 resultados para SINGLE-QUANTUM-WELL
Resumo:
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
Resumo:
Photoluminescence measurements at different temperatures have been performed to investigate the optical response of a two-dimensional electron gas in n-type wide parabolic quantum wells. A series of samples with different well widths in the range of 1000-3000 A was analyzed. Many-body effects, usually observed in the recombination process of a two-dimensional electron gas, appear as a strong enhancement in the photoluminescence spectra at the Fermi level at low temperature only in the thinnest parabolic quantum wells. The suppression of the many-body effect in the thicker quantum wells was attributed to the decrease of the overlap between the wavefunctions of the photocreated holes and the two-dimensional electrons belonging to the highest occupied electron subband. (C) 2007 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous analyses of mitochondrial (mt)DNA and allozymes covering the range of the Iberian endemic golden-striped salamander, Chioglossa lusitanica, suggested a Pleistocene split of the historical species distribution into two population units (north and south of the Mondego river), postglacial expansion into the northernmost extant range, and secondary contact with neutral diffusion of genes close to the Mondego river. We extended analysis of molecular variation over the species range using seven microsatellite loci and the nuclear P-fibrinogen intron 7 (beta-fibint7). Both microsatellites and beta-fibint7 showed moderate to high levels of population structure, concordant with patterns detected with mtDNA and allozymes; and a general pattern of isolation-by-distance, contrasting the marked differentiation of two population groups suggested by mtDNA and allozymes. Bayesian multilocus analyses showed contrasting results as populations north and south of the Douro river were clearly differentiated based on microsatellites, whereas allozymes revealed differentiation north and south of the Mondego river. Additionally, decreased microsatellite variability in the north supported the hypothesis of postglacial colonization of this region. The well-documented evolutionary history of C. lusitanica, provides an excellent framework within which the advantages and limitations of different classes of markers can be evaluated in defining patterns of population substructure and inferring evolutionary processes across distinct spatio-temporal scales. The present study serves as a cautionary note for investigations that rely on a single type of molecular marker, especially when the organism under study exhibits a widespread distribution and complex natural history. (C) 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 371-387.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The aim of the study was to investigate the effect of acupuncture on wound healing after soft tissue or orthopaedic surgery in dogs.Methods: 29 dogs were submitted to soft tissue and/or orthopaedic surgeries. Five dogs had two surgical wounds each, so there were totally 34 wounds in the study. All owners received instructions for post operative care as well as antibiotic and pain treatment. The dogs were randomly assigned to treatment or control groups. Treated dogs received one dry needle acupuncture treatment right after surgery and the control group received no such treatment. A veterinary surgeon that was blinded to the treatment, evaluated the wounds at three and seven days after surgery in regard to oedema (scale 0-3), scabs (yes/no), exudate (yes/no), hematoma (yes/no), dermatitis (yes/no), and aspect of the wound (dry/humid).Results: There was no significant difference between the treatment and control groups in the variables evaluated three and seven days after surgery. However, oedema reduced significantly in the group treated with acupuncture at seven days compared to three days after surgery, possibly due the fact that there was more oedema in the treatment group at day three (although this difference was nor significant between groups).Conclusions: The use of a single acupuncture treatment right after surgery in dogs did not appear to have any beneficial effects in surgical wound healing.
Resumo:
We compare exact and semiclassical Husimi distributions for the single eigenstates of a one-dimensional resonant Hamiltonian. We find that both distributions concentrate near the unstable fixed points even when these points are made complex by suitably varying a parameter. © 1992 The American Physical Society.
Resumo:
Negative dimensional integration method (NDIM) is a technique to deal with D-dimensional Feynman loop integrals. Since most of the physical quantities in perturbative Quantum Field Theory (pQFT) require the ability of solving them, the quicker and easier the method to evaluate them the better. The NDIM is a novel and promising technique, ipso facto requiring that we put it to test in different contexts and situations and compare the results it yields with those that we already know by other well-established methods. It is in this perspective that we consider here the calculation of an on-shell two-loop three point function in a massless theory. Surprisingly this approach provides twelve non-trivial results in terms of double power series. More astonishing than this is the fact that we can show these twelve solutions to be different representations for the same well-known single result obtained via other methods. It really comes to us as a surprise that the solution for the particular integral we are dealing with is twelvefold degenerate.
Resumo:
We develop a relativistic quark model for pion structure, which incorporates the nontrivial structure of the vacuum of quantum chromodynamics as modelled by instantons. Pions are bound states of quarks and the strong quark-pion vertex is determined from an instanton induced effective Lagrangian. The interaction of the constituents of the pion with the external electromagnetic field is introduced in gauge invariant form. The parameters of the model, i.e., effective instanton radius and constituent quark mass, are obtained from the vacuum expectation values of the lowest dimensional quark and gluon operators and the low-energy observables of the pion. We apply the formalism to the calculation of the pion form factor by means of the isovector nonforward parton distributions and find agreement with the experimental data. © 2000 Elsevier Science B.V.
Resumo:
Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.
Resumo:
We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
Resumo:
We derive the equation of state of nuclear matter for the quark-meson coupling model taking into account quantum fluctuations of the σ meson as well as vacuum polarization effects for the nucleons. This model incorporates explicitly quark degrees of freedom with quarks coupled to the scalar and vector mesons. Quantum fluctuations lead to a softer equation of state for nuclear matter giving a lower value of incompressibility than would be reached without quantum effects. The in-medium nucleon and σ-meson masses are also calculated in a self-consistent manner. The spectral function of the σ meson is calculated and the σ mass has the value increased with respect to the purely classical approximation at high densities.