986 resultados para SEQUENCE TYPES
Resumo:
BACKGROUND: Conserved non-coding sequences in the human genome are approximately tenfold more abundant than known genes, and have been hypothesized to mark the locations of cis-regulatory elements. However, the global contribution of conserved non-coding sequences to the transcriptional regulation of human genes is currently unknown. Deeply conserved elements shared between humans and teleost fish predominantly flank genes active during morphogenesis and are enriched for positive transcriptional regulatory elements. However, such deeply conserved elements account for <1% of the conserved non-coding sequences in the human genome, which are predominantly mammalian. RESULTS: We explored the regulatory potential of a large sample of these 'common' conserved non-coding sequences using a variety of classic assays, including chromatin remodeling, and enhancer/repressor and promoter activity. When tested across diverse human model cell types, we find that the fraction of experimentally active conserved non-coding sequences within any given cell type is low (approximately 5%), and that this proportion increases only modestly when considered collectively across cell types. CONCLUSIONS: The results suggest that classic assays of cis-regulatory potential are unlikely to expose the functional potential of the substantial majority of mammalian conserved non-coding sequences in the human genome.
Resumo:
Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.
Resumo:
In coronary magnetic resonance angiography, a magnetization-preparation scheme for T2 -weighting (T2 Prep) is widely used to enhance contrast between the coronary blood-pool and the myocardium. This prepulse is commonly applied without spatial selection to minimize flow sensitivity, but the nonselective implementation results in a reduced magnetization of the in-flowing blood and a related penalty in signal-to-noise ratio. It is hypothesized that a spatially selective T2 Prep would leave the magnetization of blood outside the T2 Prep volume unaffected and thereby lower the signal-to-noise ratio penalty. To test this hypothesis, a spatially selective T2 Prep was implemented where the user could freely adjust angulation and position of the T2 Prep slab to avoid covering the ventricular blood-pool and saturating the in-flowing spins. A time gap of 150 ms was further added between the T2 Prep and other prepulses to allow for in-flow of a larger volume of unsaturated spins. Consistent with numerical simulation, the spatially selective T2 Prep increased in vivo human coronary artery signal-to-noise ratio (42.3 ± 2.9 vs. 31.4 ± 2.2, n = 22, P < 0.0001) and contrast-to-noise-ratio (18.6 ± 1.5 vs. 13.9 ± 1.2, P = 0.009) as compared to those of the nonselective T2 Prep. Additionally, a segmental analysis demonstrated that the spatially selective T2 Prep was most beneficial in proximal and mid segments where the in-flowing blood volume was largest compared to the distal segments. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
Neuroinflammation is observed in many brain pathologies: in neurodegenerative diseases and multiple sclerosis as well as in chemically induced lesions. It is characterized by the reactivity of microglial cells and astrocytes, activation of inducible NO-synthase (i-NOS), and increased expression and/or release of cytokines and chemokines. Clearly, cell-to-cell signaling between the different brain cell types plays an important role in the initiation and propagation of neuroinflammation, but despite the growing list of known molecular actors, the underlying pathways and the sequence of events remain to be fully elucidated. The present chapter presents an example of how to assess neuroinflammation in complex brain tissues, using aggregating brain cell cultures as an in vitro model. This three-dimensional cell culture system provides optimal cell-to-cell interactions crucial for histotypic cellular maturation and control of neuroinflammatory processes. The techniques described here comprise immunocytochemistry to assess the reactivity of microglia and astrocytes and the expression of cytokines; quantitative RT-PCR to measure the mRNA expression of cytokines (TNF-α, IL-1β, IL-6, IL-1ra, TGF-β, IL-15, IFN-γ), chemokines (ccl5, cxcl1, cxcl2), and i-NOS; and immunoblotting to assess MAP kinase pathway activation (phosphorylation of p38 and p44/42 MAP kinases).
Resumo:
The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.
Resumo:
BACKGROUND: The aim of this retrospective study was to evaluate speech outcome and need of a pharyngeal flap in children born with nonsyndromic Pierre Robin Sequence (nsPRS) vs syndromic Pierre Robin Sequence (sPRS). METHODS: Pierre Robin Sequence was diagnosed when the triad microretrognathia, glossoptosis, and cleft palate were present. Children were classified at birth in 3 categories depending on respiratory and feeding problems. The Borel-Maisonny classification was used to score the velopharyngeal insufficiency. RESULTS: The study was based on 38 children followed from 1985 to 2006. For the 25 nsPRS, 9 (36%) pharyngeal flaps were performed with improvements of the phonatory score in the 3 categories. For the 13 sPRS, 3 (23%) pharyngeal flaps were performed with an improvement of the phonatory scores in the 3 children. There was no statistical difference between the nsPRS and sPRS groups (P = .3) even if we compared the children in the 3 categories (P = .2). CONCLUSIONS: Children born with nsPRS did not have a better prognosis of speech outcome than children born with sPRS. Respiratory and feeding problems at birth did not seem to be correlated with speech outcome. This is important when informing parents on the prognosis of long-term therapy
Resumo:
In diabetes mellitus, it is expected to see a common, mainly sensitive, distal symmetrical polyneuropathy (DPN) involving a large proportion of diabetic patients according to known risk factors. Several other diabetic peripheral neuropathies are recognized, such as dysautonomia and multifocal neuropathies including lumbosacral radiculoplexus and oculomotor palsies. In this review, general aspects of diabetic neuropathies are examined, and it is discussed why and how the general practionner has to perform a yearly examination. At the present time, some consensuses emerge to ask help from the specialist when faced to other forms of peripheral neuropathies than distal symmetrical DPN.
Resumo:
In experimental animals, oncofoetal antigens1 have been found to be associated with both chemical-2 and virus-induced tumours3. In man the two best known oncofoetal antigens are the α-foetoprotein (AFP) described by both Abelev4 and Tatarinov5 and the carcinoembryonic antigen (CEA) of the human digestive system identified by Gold and Freedman6. We describe here a different human oncofoetal antigen, common to several types of carcinomas and various foetal organs. This antigen has been identified by rabbit antisera raised against semipurified fractions of colon carcinoma soluble extracts. Because of its β-immunoelectrophoretic mobility, this antigen will be referred to as β-oncofoetal antigen (BOFA).
Resumo:
Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.
Resumo:
By identifying types whose low-order beliefs up to level li about the state of nature coincide, weobtain quotient type spaces that are typically smaller than the original ones, preserve basic topologicalproperties, and allow standard equilibrium analysis even under bounded reasoning. Our Bayesian Nash(li; l-i)-equilibria capture players inability to distinguish types belonging to the same equivalence class.The case with uncertainty about the vector of levels (li; l-i) is also analyzed. Two examples illustratethe constructions.
Resumo:
In todays competitive markets, the importance of goodscheduling strategies in manufacturing companies lead to theneed of developing efficient methods to solve complexscheduling problems.In this paper, we studied two production scheduling problemswith sequence-dependent setups times. The setup times areone of the most common complications in scheduling problems,and are usually associated with cleaning operations andchanging tools and shapes in machines.The first problem considered is a single-machine schedulingwith release dates, sequence-dependent setup times anddelivery times. The performance measure is the maximumlateness.The second problem is a job-shop scheduling problem withsequence-dependent setup times where the objective is tominimize the makespan.We present several priority dispatching rules for bothproblems, followed by a study of their performance. Finally,conclusions and directions of future research are presented.
Resumo:
The sequence profile method (Gribskov M, McLachlan AD, Eisenberg D, 1987, Proc Natl Acad Sci USA 84:4355-4358) is a powerful tool to detect distant relationships between amino acid sequences. A profile is a table of position-specific scores and gap penalties, providing a generalized description of a protein motif, which can be used for sequence alignments and database searches instead of an individual sequence. A sequence profile is derived from a multiple sequence alignment. We have found 2 ways to improve the sensitivity of sequence profiles: (1) Sequence weights: Usage of individual weights for each sequence avoids bias toward closely related sequences. These weights are automatically assigned based on the distance of the sequences using a published procedure (Sibbald PR, Argos P, 1990, J Mol Biol 216:813-818). (2) Amino acid substitution table: In addition to the alignment, the construction of a profile also needs an amino acid substitution table. We have found that in some cases a new table, the BLOSUM45 table (Henikoff S, Henikoff JG, 1992, Proc Natl Acad Sci USA 89:10915-10919), is more sensitive than the original Dayhoff table or the modified Dayhoff table used in the current implementation. Profiles derived by the improved method are more sensitive and selective in a number of cases where previous methods have failed to completely separate true members from false positives.