999 resultados para SEMICONDUCTOR INTERFACES
Resumo:
An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 leads to suppression of phase re-laxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron-hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.
Resumo:
An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 (α is the small-signal gain and L is the amplifier length) leads to suppression of phase relaxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron - hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.
Resumo:
Experimental demonstration of lasing in a broad area twin-contact semiconductor laser which operates as a phase-conjugation (PC) mirror in an external cavity configuration is reported. This allows "self-aligned" and self-pumped spatially nondegenerate four-wave mixing to be achieved without the need for external optical signals. The external cavity laser system is very insensitive to tilt misalignments of the external mirror in the PC regime and exhibits very good mechanical stability. The resonant frequency of the external cavity lies in the GHz range which corresponds to a subnanosecond time response of phase conjugation processes in the semiconductor laser. © 1997 American Institute of Physics.
Resumo:
We present a simple and semi-physical analytical description of the current-voltage characteristics of amorphous oxide semiconductor thin-film transistors in the above-threshold and sub-threshold regions. Both regions are described by single unified expression that employs the same set of model parameter values directly extracted from measured terminal characteristics. The model accurately reproduces measured characteristics of amorphous semiconductor thin film transistors in general, yielding a scatter of < 4%. © 1980-2012 IEEE.
Resumo:
Gallium nitride (GaN) has a bright future in high voltage device owing to its remarkable physical properties and the possibility of growing heterostructures on silicon substrates. GaN High Electron Mobility Transistors (HEMTs) are expected to make a strong impact in off line applications and LED drives. However, unlike in silicon-based power devices, the on-state resistance of HEMT devices is hugely influenced by donor and acceptor traps at interfaces and in the bulk. This study focuses on the influence of donor traps located at the top interface between the semiconductor layer and the silicon nitride on the 2DEG density. It is shown through TCAD simulations and analytical study that the 2DEG charge density has an 'S' shape variation with two distinctive 'flat' regions, wherein it is not affected by the donor concentration, and one linear region. wherein the channel density increases proportionally with the donor concentration. We also show that the upper threshold value of the donor concentration within this 'S' shape increases significantly with the AIGaN thickness and the Al mole fraction and is highly affected by the presence of a thin GaN cap layer. © 2013 IEEE.
Resumo:
This paper reports a theoretical model for Dicke Superradiance in semiconductor laser devices. Simulations agree well with previously-observed superradiance properties and are used to optimize driving conditions and device geometry. © OSA/ANIC/IPR/Sensors/SL/SOF/SPPCom/2011.
Resumo:
Superradiant emission pulses from a quantum-dot tapered device are generated on demand at repetition rates of up to 5 MHz. The pulses have durations as short as 320 fs at a wavelength of 1270 nm. © 2010 Optical Society of America.
Resumo:
Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.
Resumo:
© 2013 IEEE. This paper reviews the mechanisms underlying visible light detection based on phototransistors fabricated using amorphous oxide semiconductor technology. Although this family of materials is perceived to be optically transparent, the presence of oxygen deficiency defects, such as vacancies, located at subgap states, and their ionization under illumination, gives rise to absorption of blue and green photons. At higher energies, we have the usual band-to-band absorption. In particular, the oxygen defects remain ionized even after illumination ceases, leading to persistent photoconductivity, which can limit the frame-rate of active matrix imaging arrays. However, the persistence in photoconductivity can be overcome through deployment of a gate pulsing scheme enabling realistic frame rates for advanced applications such as sensor-embedded display for touch-free interaction.
Power Law Dependence of Field-Effect Mobility in Amorphous Oxide Semiconductor Thin Film Transistors