910 resultados para Rockwell Superficial Hardness tester
Resumo:
Seeking to meet the requirements: relatively low cost of materials and wide applicability in the automotive industry. The best option was the steel Dual Phase (DP), because that is lighter, have high formability, meet the cost requirements and applicability, steel Dual Phase (DP) came to meet these requirements with its two-phase microstructure, ferrite and martensite microstructure who claim to respect and mechanical properties. In this context, the aim of this study was to correlate the microstructure revealed in metallography to the mechanical properties observed in hardness and tensile tests. The microstructure is revealed by etching in 2% nital and then captured images of the sample were processed in ImageJ software to aid in determining the volume fraction of the phases present. Therefore, the mechanical properties were evaluated with respect to volume fraction of the steel layers and analyzed DP 600 together with the mechanical properties obtained by Rockwell hardness test and tensile test. With the values of the mechanical properties calculated and tested, it was possible to describe the method of metallography, as the attack phase and counts, so that it can use this relationship tested/calculated property as a qualitative analytical tool. The method used for the correlation between the microstructure and mechanical properties confirmed the importance of the phases present in the Dual Phase steel to obtain the desired mechanical properties in the application of the steel
Resumo:
Baja SAE competitions challenge engineering students to design and build offroad vehicles, preparing them for the competitive job market. This monograph aims to study a part of the braking of a Baja SAE vehicle system, the brake disc. Giving attention to the wear suffered by discs of two different materials, steel 1045 and stainless steel 304, helping the team Piratas do Vale Bardahl in the best selection between them. Braking tests were performed on a test bench. Both discs have suffered the same braking conditions. Brake pads material, brake line pressure, braking time, number of braking, were parameters which were repeated in the testing of different types of disk, in order to ensure a high power comparison between the obtained data. Before and after the disk tests were weighed and measured, to make a comparison. After the brake tests, the disks were subjected to hardness and surface roughness testing. With the data collected and observations made in the worn parts, the comparison between these two materials was made, obtaining a selection of the best material for the team. The tests showed that steel 1045 has more advantages, compared to stainless steel 304, when applied to brake discs, on the tested conditions
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Química - IQ
Resumo:
The aim of this study was to investigate the enamel wear permanent teeth after plastic stick or low speed rubber cup microabrasion. Ten permanent molars were selected to evaluate enamel wear which were sectioned into mesial and distal halves. Each half of the molars was randomly assigned to one of two experimental groups (n = 10) according to the enamel microabrasion technique: plastic stick (GE) or rubber cup (GT). In both the groups, the enamel was submitted to 10 applications of an abrasive paste comprised of 35% phosphoric acid and pumice powder. The paste was applied for 20 seconds under a pressure of 30 g using the instrument defined for each group (plastic stick or rubber cup). The specimens were evaluated under a stereomicroscope connected to a computer. The enamel wear no was statistically different between GE and GT, which presented a mean wear of 304.74 µm (21.20%) and 338.35 µm (22.75%). In conclusion, superficial enamel wear was seen for both the groups, independent of the technique used for the accomplishment of the microabrasion.
Resumo:
To evaluate changes in microhardness, roughness and surface morphology of dental enamel and composite resin after different tooth bleaching techniques. Material and Methods: Dental fragments from bovine incisors with composite resin restorations were submitted to different bleaching protocols: G1 – daily 8 hours application of a 10% carbamide peroxide (CP) gel during 21 days; G2: 3 applications of 15 minutes of a 38% hydrogen peroxide (H2O2) gel; G3: 38% H2O2 gel associated to irradiation with LED (470nm) during 6 minutes. The Knoop micro hardness of enamel and composite resin were evaluated at 1, 7, 14 and 21 days for G1, and after 1, 2 and 3 sessions for G2 and G3. The roughness and superficial morphology (atomic force microscopy) were evaluated before and at the end of the bleaching treatment. The data were analyzed by Mann-Whitney and Wilcoxon tests (=5%). Results: Significant reduction on enamel hardness was observed after 2 and 3 sessions for G2 and G3. For composite, the reduction occurred after 21 days for G1, and after 3 sessions for G2 and G3 (p<0.05). Significant reduction on roughness and superficial morphology were observed only for enamel of G1 group (p<0.05). Conclusion: The 10% CP gel promoted only superficial alterations on dental enamel, while the 38% H2O2 gel promoted mineral reduction of this dental tissue. All the bleaching protocols promoted reduction on hardness of composite resin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study assessed the surface microhardness of compound resins cured by different light sources. Methods Three micro hybrid (Vit-l-escence, Amelogen Plus, Opallis) and one nanoparticle (Filtek Z350, 3M ESPETM Dental Products, St. Paul, USA) compound resins were selected. The resins were polymerized by a halogen light unit (Ultralux, Dabi Atlante, Ribeirão Preto, Brasil) with two tips, one semi-guided made of glass and another of painted acrylic and a LED-based source (UltraLume 2, Ultradent®, South Jordan, USA). Specimens constructed from a circular aluminum matrix were photopolymerized for 40 second after they received the compound resin and stored dry for 24 hours. After this period, a Vickers surface microhardness assay was performed, measuring the top (hardness 1) and base (hardness 2) surfaces four times each. Variance analyses were complemented by Newman-Keuls method, with significance set at 5%. Results The Opallis (FGM, Santa Catarina, Brasil) resin subjected to UltraLume 2 (Ultradent®, South Jordan, USA) obtained the lowest mean hardness values for the top surface. The Vit-l-escence (Ultradent®, South Jordan, USA) compound cured by Led UltraLume 2 (Ultradent®, South Jordan, USA) and by Ultralux PCP (Dabi Atlante, Ribeirão Preto, Brasil) halogen light obtained the highest mean hardness, followed by the Filtek Z350 (3M ESPETM Dental Products, St. Paul, USA) resin subjected to UltraLume 2 (Ultradent® South Jordan, USA). The Opallis (FGM, Santa Catarina, Brasil) resin cured by LED UltraLume 2 (Ultradent®, South Jordan, USA) also obtained the lowest mean hardness for the base surface and the Vit-L-Escence (Ultradent®, South Jordan, USA) resin obtained the highest value, followed by Amelogen Plus, when cured by Ultralux (Dabi Atlante, Ribeirão Preto, Brasil) using the semi-guided tip. Conclusion The polymerization and, consequently, the microhardness achieved by the LED unit was equivalent to those achieved by conventional halogen units for three of the four composites tested.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this study is to verify the effect of three different types of dentifrices on the superficial microhardness of bovine enamel. Methods: Forty-eight 4x4mm dental fragments were polished and randomly divided into 4 groups: GI, conventional silica-based dentifrice; GII, hydrogen peroxide-based dentifrice; GIII, carbamide peroxide-based dentifrice; and GIV, immersion in artificial saliva. After polished, the specimens received five indentations of 25g static load, for 5 seconds. Subsequently, specimens from groups GI, GII and GIII were immersed in solution containing dentifrice and distilled water, in weight proportion of 1:2, for 15 minutes daily. After this period, fragments were rinsed in tap water and stored in artificial saliva at 37oC. This procedure was repeated for 21 days and then a new analysis of the microhardness was performed. Results and conclusion: The results were submitted to ANOVA and Fisher’s test at 5%. It was concluded that all samples treated with dentifrices showed hardness decrease, being most pronounced in dentifrices containing peroxide.
Resumo:
The success achieved by the use of composite resins in anterior teeth precipitately leads their use in posterior teeth. However, the indiscriminate application of these materials in cavities with several diverse sizes rapidly pointed out their lack of resistance to oclusal and proximal wear. OBJECTIVE: To evaluate the surface roughness of composite resin in relation to finishing and polishing technique. MATERIAL AND METHODS: Eight experimental groups (n = 15) were divided according to finishing and polishing technique: G1 – Z250TM composite resin without surface finishing and polishing; G2 – Z250TM composite resin plus surface finishing and polishing; G3 – P60TM composite resin without surface finishing and polishing; G4 – P60TM composite resin plus surface finishing and polishing; G5 – Prodigy CondensableTM composite resin without surface finishing and polishing; G6 – Prodigy CondensableTM composite resin plus surface finishing and polishing; G7 – SurefillTM composite resin without surface finishing and polishing; G8 – SurefillTM composite resin plus surface finishing and polishing. Three packable and one microhybrid (control group) composite resin was used. The surface roughness was measured using a profilometer at three points in each sample. The results were evaluated by ANOVA and Tukey test (p < 0.05). RESULTS: Prodigy CondensableTM composite resin showed the lowest surface roughness, while SurefillTM showed the highest surface roughness. Comparing the resins used, only between P60TM and SurefillTM there were no statistically significant differences (p > 0,05). CONCLUSION: Surface roughness was lower in all types of resin composites surfaces in contact with Mylar matrix strip than in areas submitted to finishing and polishing procedure.
Resumo:
Objective: This study aims to evaluate the degree of conversion (DC) and hydrolytic degradation through the Vickers hardness test (HV) of a nanofilled (Filtek™ Z-250, 3M) and a microhybrid (Filtek™Supreme-XT, 3M) composite resin. Materials and methods: Eight disk-shaped specimens (4 mm diameter × 2 mm thick, ISO 4049) of each material were prepared for each test. Composites were inserted into single increment in a metallic matrix and light-cured for 40 seconds. VH readings were performed for each specimen at predetermined intervals: immediately after polymerization (control), 1, 2, 3, 7, 14, 21, 30 and 180 days. After curing, initial hardness measurements were performed and the specimens were immersed in artificial saliva at 37°C. For DC (%), specimens were ground, pressed with KBr and analyzed by FT-IR spectrophotometer. Results: Student t-test showed that there was no difference between the resins for DC (p = 0.252). ANOVA analysis revealed that Z-250 VH means were all greater than S-XT, for both top and bottom surfaces, whatever the storage-period in artificial saliva (p < 0.001). After 180 days of storage, the hardness obtained for S-XT was similar with that at the baseline, for both top and bottom surfaces. While for Z-250 hardness was not significantly different from baseline only for top surface, but there was a significant decrease observed in hardness for bottom surface. Conclusion: The materials tested showed no evidence of hydrolytic degradation in a significant way, in a 6-month storagetime in artificial saliva. Nanofilled resin presents a monomer conversion comparable to the conventional microhybrid.
Resumo:
This study evaluated the influence of fluoride mouth rinses and repolishing on the superficial morphology and color stability of nanofilled resin. About 150 specimens were prepared and polished using aluminum oxide discs for 15 s with a pressure of 2 kg. The experimental groups were divided according to the immersion medium (artificial saliva, 0.5% sodium fluoride, Fluordent Reach, Oral B, Fluorgard) and repolishing procedure (without and with). The specimens were continuously immersed for 1 week. Thereafter, half of each sample was repolished. A color reading was performed after 24 h of immersion in the artificial saliva baseline, after continuous immersion, and after repolishing. The superficial morphology was examined using scanning electron microscopy (SEM) in a qualitative way. Color change (∆E) data were submitted to a mixed analysis of variance using a Shapiro-Wilk test (p>0.05 for the different immersion media) and Sidak's test (p<0.05 for the differences between groups). In the interaction between the repolishing and the immersion media, Fluorgard showed a statistical difference between the ∆E values with and without repolishing (p<0.0001). On the SEM observations, both Fluordent Reach and Fluorgard caused degradation of the superficial resinous matrix of the composite after continuous immersion. This matrix was removed after repolishing.
Resumo:
In this study the effects of thermal and mechanical cycles on the hardness and roughness of artificial teeth were evaluated. Materials and Methods:Specimens were prepared and stored in distilled water at 37ºC for 48 hours (n=10).The hardness and roughness readings were made in the following time intervals, according to each group:G1: after specimen storage in distilled water at 37°C for 48 hours; G2: after 600.000 constant mechanical cycles; G3: after 1.200.000 constant mechanical cycles; G4: after 2.500 thermalcycling baths, alternated between hot water (55°C) and cold water (5°C) and G5: after 5.000 thermalcycling baths, alternated between hot water (55°C) and cold water (5°C). After cycling and storage procedures, the specimens of each group were submittedto surface roughness and hardness readouts. Statistical evaluation was performed by three-way analysis of variance, complemented by the Tukey multiple comparisons of means test. The level of significance adopted was 5%. There was no significant difference between G1, G4 and G5 as regards mean roughness of different brands of artificial teeth. Groups G2 and G3 showed higher mean roughness values, and generally equivalent values in all time intervals, except for Trilux (G3> G2). Significant differences in hardness values were observed in different brands of artificial teeth, and differences in values after thermal and mechanical cycling. In conclusion, our findings suggest that thermal cyclingdid not change the roughness of the artificial teeth tested, but after the mechanical cycling the roughness values increased. Thermal and mechanical cycling influenced the hardness of the artificial teeth tested.