850 resultados para Robótica
Resumo:
In this paper, we present a depth-color scene modeling strategy for indoors 3D contents generation. It combines depth and visual information provided by a low-cost active depth camera to improve the accuracy of the acquired depth maps considering the different dynamic nature of the scene elements. Accurate depth and color models of the scene background are iteratively built, and used to detect moving elements in the scene. The acquired depth data is continuously processed with an innovative joint-bilateral filter that efficiently combines depth and visual information thanks to the analysis of an edge-uncertainty map and the detected foreground regions. The main advantages of the proposed approach are: removing depth maps spatial noise and temporal random fluctuations; refining depth data at object boundaries, generating iteratively a robust depth and color background model and an accurate moving object silhouette.
Resumo:
There is an increasing need of easy and affordable technologies to automatically generate virtual 3D models from their real counterparts. In particular, 3D human reconstruction has driven the creation of many clever techniques, most of them based on the visual hull (VH) concept. Such techniques do not require expensive hardware; however, they tend to yield 3D humanoids with realistic bodies but mediocre faces, since VH cannot handle concavities. On the other hand, structured light projectors allow to capture very accurate depth data, and thus to reconstruct realistic faces, but they are too expensive to use several of them. We have developed a technique to merge a VH-based 3D mesh of a reconstructed humanoid and the depth data of its face, captured by a single structured light projector. By combining the advantages of both systems in a simple setting, we are able to reconstruct realistic 3D human models with believable faces.
Resumo:
We present an adaptive unequal error protection (UEP) strategy built on the 1-D interleaved parity Application Layer Forward Error Correction (AL-FEC) code for protecting the transmission of stereoscopic 3D video content encoded with Multiview Video Coding (MVC) through IP-based networks. Our scheme targets the minimization of quality degradation produced by packet losses during video transmission in time-sensitive application scenarios. To that end, based on a novel packet-level distortion model, it selects in real time the most suitable packets within each Group of Pictures (GOP) to be protected and the most convenient FEC technique parameters, i.e., the size of the FEC generator matrix. In order to make these decisions, it considers the relevance of the packet, the behavior of the channel, and the available bitrate for protection purposes. Simulation results validate both the distortion model introduced to estimate the importance of packets and the optimization of the FEC technique parameter values.
Resumo:
Transmission errors are the main cause of degradation of the quality of real broadcasted video services. Therefore, knowing their impact on the quality of experience of the end users is a crucial issue. For instance, it would help to improve the performance of the distribution systems, and to develop monitoring tools to automatically estimate the quality perceived by the end users. In this paper we validate a subjective evaluation approach specifically designed to obtain meaningful results of the effects of degradations caused by transmission errors. This methodology has been already used in our previous works with monoscopic and stereoscopic videos. The validation is done by comparing the subjective ratings obtained for typical transmission errors with the proposed methodology and with the standard method Absolute Category Rating. The results show that the proposed approach could provide more representative evaluations of the quality of experience perceived by end users of conventional and 3D broadcasted video services.
Resumo:
We present a framework for the analysis of the decoding delay and communication latency in Multiview Video Coding. The application of this framework on MVC decoders allows minimizing the overall delay in immersive video-conference systems.
Resumo:
Although the delivery of 3D video services to households is nowadays a reality thanks to frame-compatible formats, many efforts are being made to obtain efficient methods to transmit 3D content offering a high quality of experience to the end users. In this paper, a stereoscopic video streaming scenario is considered and the perceptual impact of various strategies applicable to adaptive streaming situations are compared. Specifically, the mechanisms are based on switching between copies of the content with different coding qualities, on discarding frames of the sequence, on switching from 3D to 2D and on using asymmetric coding of the stereo views. In addition, when video freezes happen, the possibility of keeping the end-to-end latency or maintaining the continuity of the video are considered. These aspects were evaluated carrying out a subjective assessment test considering also visual discomfort issues using a methodology designed to keep as far as possible domestic viewing conditions.
Resumo:
Research in stereoscopic 3D coding, transmission and subjective assessment methodology depends largely on the availability of source content that can be used in cross-lab evaluations. While several studies have already been presented using proprietary content, comparisons between the studies are difficult since discrepant contents are used. Therefore in this paper, a freely available dataset of high quality Full-HD stereoscopic sequences shot with a semiprofessional 3D camera is introduced in detail. The content was designed to be suited for usage in a wide variety of applications, including high quality studies. A set of depth maps was calculated from the stereoscopic pair. As an application example, a subjective assessment has been performed using coding and spatial degradations. The Absolute Category Rating with Hidden Reference method was used. The observers were instructed to vote on video quality only. Results of this experiment are also freely available and will be presented in this paper as a first step towards objective video quality measurement for 3DTV.
Resumo:
A spatial-color-based non-parametric background-foreground modeling strategy in a GPGPU by using CUDA is proposed. This strategy is suitable for augmented-reality applications, providing real-time high-quality results in a great variety of scenarios.
Resumo:
Considering a scalable video quality monitoring architecture to detect transmission errors at households, we propose a technique to detect packet losses in IPTV and Side-by-Side 3DTV and evaluate their impact on the perceived quality.
Resumo:
In this paper we present a FEC scheme based on simple LDGM codes to protect packetized multimedia streams. We demonstrate that simple LDGM codes working with a limited number of packets (small values of k) obtain recovery capabilities, against bursty packet losses, that are similar to those of other more complex FEC-based schemes designed for this type of channels.
Resumo:
Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.
Resumo:
In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion
Resumo:
We analyze the performance of the geometric distortion, incurred when coding depth maps in 3D Video, as an estimator of the distortion of synthesized views. Our analysis is motivated by the need of reducing the computational complexity required for the computation of synthesis distortion in 3D video encoders. We propose several geometric distortion models that capture (i) the geometric distortion caused by the depth coding error, and (ii) the pixel-mapping precision in view synthesis. Our analysis starts with the evaluation of the correlation of geometric distortion values obtained with these models and the actual distortion on synthesized views. Then, the different geometric distortion models are employed in the rate-distortion optimization cycle of depth map coding, in order to assess the results obtained by the correlation analysis. Results show that one of the geometric distortion models is performing consistently better than the other models in all tests. Therefore, it can be used as a reasonable estimator of the synthesis distortion in low complexity depth encoders.
Resumo:
Este estudio presenta una comparativa entre un LIDAR modelo LMS-111 (Sick Ltd.) y una cámara de profundidad de uso doméstico: Kinect (Microsoft Corporation), orientada a determinar las condiciones de uso de uno y otro sensor, así como sus ventajas e inconvenientes cuando son empleados en condiciones de campo, en una explotación agrícola. Para ello se realizaron diversos ensayos en una parcela experimental del CSIC-CAR de Arganda del Rey, España. Para los ensayos ambos sensores fueron instalados en un tractor operado remotamente diseñado y construido en el marco del proyecto europeo RHEA. Dicho tractor realizó dos recorridos diferentes: el primero se efectuó en paralelo a un muro y el segundo paralelo a una hilera de olivos. El primer ensayo se realizó con el propósito de cuantificar la uniformidad de las mediciones de ambos sensores y el segundo para validar los resultados en un cultivo real. Los recorridos se realizaron empleando cuatro marchas diferentes, con el objetivo de determinar si los diferentes regímenes de operación del motor influyen sobre la precisión de los sensores. Los resultados muestran que el LIDAR posee un mayor alcance máximo de medición, pero una resolución menor frente a Kinect, muestran además que el LIDAR puede ser operado a cualquier hora del día y condición meteorológica, mientras que Kinect, no puede operar en exteriores, salvo en horas del día con baja intensidad lumínica. Por otra parte la gran desventaja del LIDAR es su coste, 30 veces más alto que Kinect.
Resumo:
The last generation of consumer electronic devices is endowed with Augmented Reality (AR) tools. These tools require moving object detection strategies, which should be fast and efficient, to carry out higher level object analysis tasks. We propose a lightweight spatio-temporal-based non-parametric background-foreground modeling strategy in a General Purpose Graphics Processing Unit (GPGPU), which provides real-time high-quality results in a great variety of scenarios and is suitable for AR applications.