902 resultados para Reverse micelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vaccines 1-2 and V4 are avirulent strains of Newcastle disease virus. Organ tropism of strain V4 has been determined and the virus has a predilection for the digestive tract. Tropism of strain 1-2 has not yet been determined. The objective of this study was to determine the distribution of strain 1-2 in various body organs and fluids following vaccination in comparison with V4. Four-week-old chickens were vaccinated by eye drop separately with these two avirulent strains. Virus isolation and the reverse transcription-polymerase chain reaction technique were employed to detect 1-2 and V4 viruses in various tissues and body fluids for 7 days following vaccination. Tissues from the respiratory tract showed earlier positive signals than tissues from other organs for chickens vaccinated with strain 1-2. Conversely, tissues from mainly digestive tract produced earlier positive signals than from respiratory tract and other organs from chickens vaccinated with strain V4. In early infection, strain 1-2 had preferential predilection for the respiratory tract and strain V4 for the digestive tract. Later after vaccination, other organs showed positive results from chickens vaccinated with both 1-2 and V4 strains. The differences in organ tropism observed in this study suggest that 1-2 may perform better than V4 as a live vaccine strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent theoretical work points to the possibility of foreign direct investment motivated not by 'ownership' advantages which may be exploited by a multinational enterprise but by the desire to access the superior technology of a host nation through direct investment. To be successful, technology sourcing foreign direct investment hinges crucially on the existence of domestic-to-foreign technological externalities within the host country. We test empirically for the existence of such 'reverse spillover' effects for a panel of UK manufacturing industries. The results demonstrate that technology generated by the domestic sector spills over to foreign multinational enterprises, but that this effect is restricted to relatively research and development intensive sectors. There is also evidence that these spillover effects are affected by the spatial concentration of industry, and that learning-by-doing effects are restricted to sectors in which technology sourcing is unlikely to be a motivating influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome sequences from many organisms, including humans, have been completed, and high-throughput analyses have produced burgeoning volumes of 'omics' data. Bioinformatics is crucial for the management and analysis of such data and is increasingly used to accelerate progress in a wide variety of large-scale and object-specific functional analyses. Refined algorithms enable biotechnologists to follow 'computer-aided strategies' based on experiments driven by high-confidence predictions. In order to address compound problems, current efforts in immuno-informatics and reverse vaccinology are aimed at developing and tuning integrative approaches and user-friendly, automated bioinformatics environments. This will herald a move to 'computer-aided biotechnology': smart projects in which time-consuming and expensive large-scale experimental approaches are progressively replaced by prediction-driven investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to discuss the recent literature on Radio Frequency Identification (RFID) and reverse logistics (RL). Particular attention is applied to the bullwhip effect and its increase as RL activities are integrated into the supply chain. RFID is investigated as a tool to assist with integrating reverse and forward logistics into a seamless supply chain and reduce the bullwhip effect. However, further research is required within this area and in particular the return on investment for RFID-enabled integrated systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baths containing sulphuric acid as catalyst and others with selected secondary catalysts (methane sulphonic acid - MSA, SeO2, a KBrO3/KIO3 mixture, indium, uranium and commercial high speed catalysts (HEEF-25 and HEEF-405)) were studied. The secondary catalysts influenced CCE, brightness and cracking. Chromium deposition mechanisms were studied in Part II using potentiostatic and potentiodynamic electroanalytical techniques under stationary and hydrodynamic conditions. Sulphuric acid as a primary catalyst and MSA, HEEF-25, HEEF-405 and sulphosalycilic acid as co-catalysts were explored for different rotation, speeds and scan rates. Maximum current was resolved into diffusion and kinetically limited components, and a contribution towards understanding the electrochemical mechanism is proposed. Reaction kinetics were further studied for H2SO4, MSA and methane disulphonic acid catalysed systems and their influence on reaction mechanisms elaborated. Charge transfer coefficient and electrochemical reaction rate orders for the first stage of the electrodeposition process were determined. A contribution was made toward understanding of H2SO4 and MSA influence on the evolution rate of hydrogen. Anodic dissolution of chromium in the chromic acid solution was studied with a number of techniques. An electrochemical dissolution mechanism is proposed, based on the results of rotating gold ring disc experiments and scanning electron microscopy. Finally, significant increases in chromium electrodeposition rates under non-stationary conditions (PRC mode) were studied and a deposition mechanisms is elaborated based on experimental data and theoretical considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a system that integrates reverse osmosis (RO) with a horticultural greenhouse has been advanced through laboratory experiments. In this concept, intended for the inland desalination of brackish groundwater in dry areas, the RO concentrate will be reduced in volume by passing it through the evaporative cooling pads of the greenhouse. The system will be powered by solar photovoltaics (PV). Using a solar array simulator, we have verified that the RO can operate with varying power input and recovery rates to meet the water demands for irrigation and cooling of a greenhouse in north-west India. Cooling requires ventilation by a fan which has also been built, tested and optimised with a PV module outdoors. Results from the experiments with these two subsystems (RO and fan) are compared to theoretical predictions to reach conclusions about energy usage, sizing and cost. For example, the optimal sizing for the RO system is 0.12–1.3 m2 of PV module per m2 of membrane, depending on feed salinity. For the fan, the PV module area equals that of the fan aperture. The fan consumes <30 J of electrical energy per m3 of air moved which is 3 times less than that of standard fans. The specific energy consumption of the RO, at 1–2.3 kWh ?m-3, is comparable to that reported by others. Now that the subsystems have been verifi ed, the next step will be to integrate and test the whole system in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many areas of northern India, salinity renders groundwater unsuitable for drinking and even for irrigation. Though membrane treatment can be used to remove the salt, there are some drawbacks to this approach e.g. (1) depletion of the groundwater due to over-abstraction, (2) saline contamination of surface water and soil caused by concentrate disposal and (3) high electricity usage. To address these issues, a system is proposed in which a photovoltaic-powered reverse osmosis (RO) system is used to irrigate a greenhouse (GH) in a stand-alone arrangement. The concentrate from the RO is supplied to an evaporative cooling system, thus reducing the volume of the concentrate so that finally it can be evaporated in a pond to solid for safe disposal. Based on typical meteorological data for Delhi, calculations based on mass and energy balance are presented to assess the sizing and cost of the system. It is shown that solar radiation, freshwater output and evapotranspiration demand are readily matched due to the approximately linear relation among these variables. The demand for concentrate varies independently, however, thus favouring the use of a variable recovery arrangement. Though enough water may be harvested from the GH roof to provide year-round irrigation, this would require considerable storage. Some practical options for storage tanks are discussed. An alternative use of rainwater is in misting to reduce peak temperatures in the summer. An example optimised design provides internal temperatures below 30EC (monthly average daily maxima) for 8 months of the year and costs about €36,000 for the whole system with GH floor area of 1000 m2 . Further work is needed to assess technical risks relating to scale-deposition in the membrane and evaporative pads, and to develop a business model that will allow such a project to succeed in the Indian rural context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to identify and evaluate potential areas of technical improvement to solar-powered desalination systems that use reverse osmosis (RO). We compare ideal with real specific energy consumption (SEC) to pinpoint the causes of inefficiency. The ideal SEC is compared among different configurations including a batch system driven by a piston, and continuous systems with single or multiple stages with or without energy recovery in each case. For example, to desalinate 1 m3 of freshwater from normal seawater (osmotic pressure 27 bar) will require at least 0.94 kWh of solar energy; thus in a sunny coastal location, up to 1850 m3 of water per year per m2 (m3/m2) of land covered by solar collectors could theoretically be desalinated. For brackish water (osmotic pressure 3 bar), 11570 m3/m2 of fresh water could theoretically be obtained under the same conditions. These ideal values are compared with practically achieved values reported in the literature. The practical energy consumption is found to be typically 40-200 times higher depending on feed water composition, system configuration and energy recovery. For state-of-the-art systems, energy losses at the various steps in the conversion process are quantified and presented with the help of Sankey diagrams. Improvements that could reduce the losses are discussed. Consequently, recommendations for areas of R&D are highlighted with particular reference to emerging technologies. It is concluded that there is considerable scope to improve the efficiency of solar-powered RO system.