971 resultados para Retrograde tracers
Resumo:
In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.
Resumo:
We prospectively investigated the potential of positron emission tomography (PET) using the somatostatin receptor (SSTR) analogue ⁶⁸Ga-DOTATATE and 2-deoxy-2[¹⁸F]fluoro-D-glucose (¹⁸F-FDG) in diffuse parenchymal lung disease (DPLD). Twenty-six patients (mean age 68.9 ± 11.0 years) with DPLD were recruited for ⁶⁸Ga-DOTATATE and ¹⁸F-FDG combined PET/high-resolution computed tomography (HRCT) studies. Ten patients had idiopathic pulmonary fibrosis (IPF), 12 patients had nonspecific interstitial pneumonia (NSIP), and 4 patients had other forms of DPLD. Using PET, the pulmonary tracer uptake (maximum standardized uptake value [SUV(max)]) was calculated. The distribution of PET tracer was compared to the distribution of lung parenchymal changes on HRCT. All patients demonstrated increased pulmonary PET signal with ⁶⁸Ga-DOTATATE and ¹⁸F-FDG. The distribution of parenchymal uptake was similar, with both tracers corresponding to the distribution of HRCT changes. The mean SUV(max) was 2.2 ± 0.7 for ⁶⁸Ga-DOTATATE and 2.8 ± 1.0 (t-test, p = .018) for ¹⁸F-FDG. The mean ⁶⁸Ga-DOTATATE SUV(max) in IPF patients was 2.5 ± 0.9, whereas it was 2.0 ± 0.7 (p = .235) in NSIP patients. The correlation between ⁶⁸Ga-DOTATATE SUV(max) and gas transfer (transfer factor of the lung for carbon monoxide [TLCO]) was r = -.34 (p = .127) and r = -.49 (p = .028) between ¹⁸F-FDG SUV(max) and TLCO. We provide noninvasive in vivo evidence in humans showing that SSTRs may be detected in the lungs of patients with DPLD in a similar distribution to sites of increased uptake of ¹⁸F-FDG on PET.
Resumo:
Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr−1 to between 0.36 and 0.82 Pg C yr−1 by the year 2100. The changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of −1 to −11 ppm by the year 2100, despite the wide range of parameterizations, model versions and scenarios included in our study. A potential upper limit of the CO2-calcification/dissolution feedback of −30 ppm by the year 2100 is computed by setting calcification to zero after 2000 in a high 21st century emission scenario. The similarity of feedback estimates yielded by the model version with calcite produced by nanophytoplankton and the one with calcite, respectively aragonite produced by mesozooplankton suggests that expending biogeochemical models to calcifying zooplankton might not be needed to simulate biogeochemical impacts on the marine carbonate cycle. The changes in saturation state confirm previous studies indicating that future anthropogenic CO2 emissions may lead to irreversible changes in ΩA for several centuries. Furthermore, due to the long-term changes in the deep ocean, the ratio of open water CaCO3 dissolution to production stabilizes by the year 2500 at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100.
Resumo:
Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants, has brought argillaceous formations into focus as potential host rocks for the geological disposal of radioactive and other waste. In several countries, programmes are under way to characterise the detailed transport properties of such formations at depth. In this context, the interpretation of profiles of natural tracers in pore waters across the formations can give valuable information about the large-scale and long-term transport behaviour of these formations. Here, tracer-profile data, obtained by various methods of pore-water extraction for nine sites in central Europe, are compiled. Data at each site comprise some or all of the conservative tracers: anions (Cl(-), Br(-)), water isotopes (delta(18)O, delta(2)H) and noble gases (mainly He). Based on a careful evaluation of the palaeo-hydrogeological evolution at each site, model scenarios are derived for initial and boundary pore-water compositions and an attempt is made to numerically reproduce the observed tracer distributions in a consistent way for all tracers and sites, using transport parameters derived from laboratory or in situ tests. The comprehensive results from this project have been reported in Mazurek et al. (2009). Here the results for three sites are presented in detail, but the conclusions are based on model interpretations of the entire data set. In essentially all cases, the shapes of the profiles can be explained by diffusion acting as the dominant transport process over periods of several thousands to several millions of years and at the length scales of the profiles. Transport by advection has a negligible influence on the observed profiles at most sites, as can be shown by estimating the maximum advection velocities that still give acceptable fits of the model with the data. The advantages and disadvantages of different conservative tracers are also assessed. The anion Cl(-) is well suited as a natural tracer in aquitards, because its concentration varies considerably in environmental waters. It can easily be measured, although the uncertainty regarding the fraction of the pore space that is accessible to anions in clays remains an issue. The stable water isotopes are also well suited, but they are more difficult to measure and their values generally exhibit a smaller relative range of variation. Chlorine isotopes (delta(37)Cl) and He are more difficult to interpret because initial and boundary conditions cannot easily be constrained by independent evidence. It is also shown that the existence of perturbing events such as the activation of aquifers due to uplift and erosion, leading to relatively sharp changes of boundary conditions, can be considered as a pre-requisite to obtain well-interpretable tracer signatures. On the other hand, gradual changes of boundary conditions are more difficult to parameterise and so may preclude a clear interpretation.
Resumo:
Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.
Resumo:
Calretinin (CR) and calbindin D-28k (CB) are cytosolic EF-hand Ca(2+)-binding proteins and function as Ca(2+) buffers affecting the spatiotemporal aspects of Ca(2+) transients and possibly also as Ca(2+) sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG) niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR, and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ) neurogenic niche of the DG. Effects were evaluated (1) two and four weeks postnatally, during the transition period of the proliferative matrix to the adult state, and (2) in adult animals (3 months) to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: (1) to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and (2) it may contribute to retrograde signaling required for maintenance of the progenitor pool.
Resumo:
Transcatheter aortic valve implantation (TAVI) for the treatment of symptomatic severe aortic stenosis has emerged as an effective treatment for high risk patients. In 2002 TAVI was performed for the first time in a human by Alain Cribier, using an antegrade access approach via the femoral vein, crossing the intra-atrial septum after puncture and passing the native aortic valve in the direction of blood flow. This technically demanding approach was subsequently replaced by retrograde transfemoral arterial access. For patients with severe peripheral vascular disease or inadequately sized femoral arteries, the transapical route provides an alternative route with antegrade access to the aortic valve via puncture of the anterolateral wall of the left ventricle. The transsubclavian access approach using most frequently the left subclavian artery and direct transaortic access have been introduced more recently and attest to the versatility of TAVI in terms of access site. This article will focus on the different access site options available to operators, provide a step-by-step guide through the procedure, and a detailed description of the technological evolution of transcatheter heart valve systems.
Resumo:
The use of metal chelators is becoming increasingly important in the development of new tracers for molecular imaging. With the rise of the field of nanotechnology, the fusion of both technologies has shown great potential for clinical applications. The pharmacokinetcs of nanoparticles can be monitored via positron emission tomography (PET) after surface modification and radiolabeling with positron emitting radionuclides. Different metal ion chelators can be used to facilitate labeling of the radionuclides and as a prerequisite, optimized radiolabeling procedure is necessary to prevent nanoparticle aggregation and degradation. However, the effects of chelator modification on nanoparticle pharmacokinetic properties have not been well studied and currently no studies to date have compared the biological effects of the use of different chelators in the surface modification of nanoparticles.
Resumo:
Calcium is a second messenger, which can trigger the modification of synaptic efficacy. We investigated the question of whether a differential rise in postsynaptic Ca2+ ([Ca2+]i) alone is sufficient to account for the induction of long-term potentiation (LTP) and long-term depression (LTD) of EPSPs in the basal dendrites of layer 2/3 pyramidal neurons of the somatosensory cortex. Volume-averaged [Ca2+]i transients were measured in spines of the basal dendritic arbor for spike-timing-dependent plasticity induction protocols. The rise in [Ca2+]i was uncorrelated to the direction of the change in synaptic efficacy, because several pairing protocols evoked similar spine [Ca2+]i transients but resulted in either LTP or LTD. The sequence dependence of near-coincident presynaptic and postsynaptic activity on the direction of changes in synaptic strength suggested that LTP and LTD were induced by two processes, which were controlled separately by postsynaptic [Ca2+]i levels. Activation of voltage-dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) resulted in the phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which acted as a retrograde messenger to induce LTD. LTP required a large [Ca2+]i transient evoked by NMDA receptor activation. Blocking mGluRs abolished the induction of LTD and uncovered the Ca2+-dependent induction of LTP. We conclude that the volume-averaged peak elevation of [Ca2+]i in spines of layer 2/3 pyramids determines the magnitude of long-term changes in synaptic efficacy. The direction of the change is controlled, however, via a mGluR-coupled signaling cascade. mGluRs act in conjunction with PLC as sequence-sensitive coincidence detectors when postsynaptic precede presynaptic action potentials to induce LTD. Thus presumably two different Ca2+ sensors in spines control the induction of spike-timing-dependent synaptic plasticity.
Resumo:
CRF has powerful receptor-mediated cardiovascular actions. To evaluate the precise distribution of CRF receptors, in vitro CRF receptor autoradiography with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine or [(125)I]-antisauvagine-30 was performed in the rodent and human cardiovascular system. An extremely high density of CRF(2) receptors was detected with both tracers in vessels of rodent lung, intestine, pancreas, mesenterium, kidney, urinary bladder, testis, heart, brain, and in heart muscle. In humans, CRF(2) receptors were detected with (125)I- antisauvagine-30 at low levels in vessels of kidneys, intestine, urinary bladder, testis, heart and in heart muscle, while only heart vessels were detected with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine. This is the first extensive morphological study reporting the extremely wide distribution of CRF(2) receptors in the rodent cardiovascular system and a more limited expression in man, suggesting a species-selective CRF receptor expression.
Resumo:
We showed that when CA3 pyramidal neurons in the caudal 80% of the dorsal hippocampus had almost disappeared completely, the efferent pathway of CA3 was rarely detectable. We used the mouse pilocarpine model of temporal lobe epilepsy (TLE), and injected iontophoretically the anterograde tracer phaseolus vulgaris leucoagglutinin (PHA-L) into gliotic CA3, medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei, or the retrograde tracer cholera toxin B subunit (CTB) into gliotic CA3 area of hippocampus. In the afferent pathway, the number of neurons projecting to CA3 from medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei increased significantly. In the hippocampus, where CA3 pyramidal neurons were partially lost, calbindin, calretinin, parvalbumin immunopositive back-projection neurons from CA1-CA3 area were observed. Sprouting of Schaffer collaterals with increased number of large boutons in both sides of CA1 area, particularly in the stratum pyramidale, was found. When CA3 pyramidal neurons in caudal 80% of the dorsal hippocampus have almost disappeared completely, surviving CA3 neurons in the rostral 20% of the dorsal hippocampus may play an important role in transmitting hyperactivity of granule cells to surviving CA1 neurons or to dorsal part of the lateral septum. We concluded that reorganization of CA3 area with its downstream or upstream nuclei may be involved in the occurrence of epilepsy.
Resumo:
Autogenous iliac crest has long served as the gold standard for anterior lumbar arthrodesis although added morbidity results from the bone graft harvest. Therefore, femoral ring allograft, or cages, have been used to decrease the morbidity of iliac crest bone harvesting. More recently, an experimental study in the animal showed that harvesting local bone from the anterior vertebral body and replacing the void by a radio-opaque beta-tricalcium phosphate plug was a valid concept. However, such a concept precludes theoretically the use of posterior pedicle screw fixation. At one institution a consecutive series of 21 patients underwent single- or multiple-level circumferential lumbar fusion with anterior cages and posterior pedicle screws. All cages were filled with cancellous bone harvested from the adjacent vertebral body, and the vertebral body defect was filled with a beta-tricalcium phosphate plug. The indications for surgery were failed conservative treatment of a lumbar degenerative disc disease or spondylolisthesis. The purpose of this study, therefore, was to report on the surgical technique, operative feasibility, safety, benefits, and drawbacks of this technique with our primary clinical experience. An independent researcher reviewed all data that had been collected prospectively from the onset of the study. The average age of the patients was 39.9 (26-57) years. Bone grafts were successfully harvested from 28 vertebral bodies in all but one patient whose anterior procedure was aborted due to difficulty in freeing the left common iliac vein. This case was converted to a transforaminal interbody fusion (TLIF). There was no major vascular injury. Blood loss of the anterior procedure averaged 250 ml (50-350 ml). One tricalcium phosphate bone plug was broken during its insertion, and one endplate was broken because of wrong surgical technique, which did not affect the final outcome. One patient had a right lumbar plexopathy that was not related to this special technique. There was no retrograde ejaculation, infection or pseudoarthrosis. One patient experienced a deep venous thrombosis. At the last follow up (mean 28 months) all patients had a solid lumbar spine fusion. At the 6-month follow up, the pain as assessed on the visual analog scale (VAS) decreased from 6.9 to 4.5 (33% decrease), and the Oswestry disability index (ODI) reduced from 48.0 to 31.7 with a 34% reduction. However, at 2 years follow up there was a trend for increase in the ODI (35) and VAS (5). The data in this study suggest that harvesting a cylinder of autograft from the adjacent vertebral body is safe and efficient. Filling of the void defect with a beta-tricalcium phosphate plug does not preclude the use of posterior pedicle screw stabilization.
Resumo:
PURPOSE: To evaluate the acute and midterm effectiveness of a novel vascular occlusion device for embolization of the internal iliac artery (IIA) before endovascular repair of aortoiliac aneurysms. MATERIALS AND METHODS: Between March 2005 and April 2006, nine men (mean age, 75 years +/- 5; range, 66-83 y) with aortoiliac aneurysms underwent bifurcated endovascular stent-graft procedures. All these patients were referred specifically for embolization. Pre- and perioperatively, eight patients underwent unilateral embolization and one underwent bilateral embolization of the IIA to prevent type II endoleak. Via a contralateral femoral approach with a 6-F or 8-F sheath, the embolization procedure was performed with an Amplatzer Vascular Plug, a self-expandable cylindrical device consisting of a nitinol-based wire mesh. Technical success, clinical outcome, and complications were evaluated. Follow-up at 3, 6, and 12 months was performed with clinical and radiologic examinations. RESULTS: IIA embolization was technically successful in all cases and no procedure-related complications occurred. Imaging at discharge and at 3-, 6-, or 12-month follow-up was accomplished in all nine patients. Control computed tomography and magnetic resonance angiography did not reveal retrograde perfusion of the aneurysmal sac, ie, type II endoleak. Three of nine patients (33.3%) reported symptoms of buttock claudication that did not resolve completely. Clinical symptoms such as bowel ischemia or sexual dysfunction were not observed. CONCLUSIONS: The midterm results of this study suggest that preoperative IIA embolization with a nitinol vascular occlusion plug during endovascular treatment of aortoiliac aneurysms is safe and effective.
Resumo:
AIM: To present a case that emphasizes the importance of the use of intentional replantation as a technique to successfully treat a periapical lesion and an odontogenic maxillary sinusitis through the alveolus at the same time. SUMMARY: This case report presents a patient with odontogenic maxillary sinusitis secondary to periapical disease of a maxillary molar that had previously received root canal treatment. The molar was extracted, with drainage and rinsing of the maxillary sinus. The apices were resected extra-orally, the retrograde cavities prepared with ultrasound and retrograde fillings of silver amalgam placed. The tooth was then replanted. After 2 years, the patient was asymptomatic, periapical radiography showed no evidence of root resorption and computed tomography scanning demonstrated the resolution of maxillary sinusitis. Key learning points: *When root canal treatment or periapical surgery cannot be undertaken or has failed, intentional replantation may be considered. *This alternative treatment may be predictable in certain cases.
Resumo:
In previous studies, it was shown that there is a gunshot-related transport of skin particles and microorganisms from the entrance region into the depth of the bullet path. The present study deals with the question of whether gunshots may also cause a retrograde transport of skin particles and microorganisms from the bullet exit region back into the bullet path. For this purpose, we used a composite model consisting of rectangular gelatin blocks and pig skin. The skin pieces were firmly attached to the gelatin blocks on the side where the bullet was to exit. Prior to the test shots, the outer surface of the pig skin was contaminated with a thin layer of a defined bacterial suspension. After drying the skin, test shots were fired from a distance of 10 m using cartridges calibre .38 spec. with different bullet types. Subsequent analyses showed that in all shots with full penetration of the composite model, the bullet path contained displaced skin particles and microorganisms from the skin surface at the exit site. These could be regularly detected in the distal 6-8 cm of the track, occasionally up to a distance of 18 cm from the exit hole. The distribution of skin particles and microorganisms is presented and the possible mechanism of this retrograde transport is discussed.