949 resultados para Retinal image quality metric
Resumo:
Introduction. In this era of high-tech medicine, it is becoming increasingly important to assess patient satisfaction. There are several methods to do so, but these differ greatly in terms of cost, time, and labour and external validity. The aim of this study is to describe and compare the structure and implementation of different methods to assess the satisfaction of patients in an emergency department. Methods. The structure and implementation of the different methods to assess patient satisfaction were evaluated on the basis of a 90-minute standardised interview. Results. We identified a total of six different methods in six different hospitals. The average number of patients assessed was 5012, with a range from 230 (M5) to 20 000 patients (M2). In four methods (M1, M3, M5, and M6), the questionnaire was composed by a specialised external institute. In two methods, the questionnaire was created by the hospital itself (M2, M4).The median response rate was 58.4% (range 9-97.8%). With a reminder, the response rate increased by 60% (M3). Conclusion. The ideal method to assess patient satisfaction in the emergency department setting is to use a patient-based, in-emergency department-based assessment of patient satisfaction, planned and guided by expert personnel.
Resumo:
BACKGROUND Retinal optical coherence tomography (OCT) permits quantification of retinal layer atrophy relevant to assessment of neurodegeneration in multiple sclerosis (MS). Measurement artefacts may limit the use of OCT to MS research. OBJECTIVE An expert task force convened with the aim to provide guidance on the use of validated quality control (QC) criteria for the use of OCT in MS research and clinical trials. METHODS A prospective multi-centre (n = 13) study. Peripapillary ring scan QC rating of an OCT training set (n = 50) was followed by a test set (n = 50). Inter-rater agreement was calculated using kappa statistics. Results were discussed at a round table after the assessment had taken place. RESULTS The inter-rater QC agreement was substantial (kappa = 0.7). Disagreement was found highest for judging signal strength (kappa = 0.40). Future steps to resolve these issues were discussed. CONCLUSION Substantial agreement for QC assessment was achieved with aid of the OSCAR-IB criteria. The task force has developed a website for free online training and QC certification. The criteria may prove useful for future research and trials in MS using OCT as a secondary outcome measure in a multi-centre setting.
Resumo:
Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.
Resumo:
La planificación pre-operatoria se ha convertido en una tarea esencial en cirugías y terapias de marcada complejidad, especialmente aquellas relacionadas con órgano blando. Un ejemplo donde la planificación preoperatoria tiene gran interés es la cirugía hepática. Dicha planificación comprende la detección e identificación precisa de las lesiones individuales y vasos así como la correcta segmentación y estimación volumétrica del hígado funcional. Este proceso es muy importante porque determina tanto si el paciente es un candidato adecuado para terapia quirúrgica como la definición del abordaje a seguir en el procedimiento. La radioterapia de órgano blando es un segundo ejemplo donde la planificación se requiere tanto para la radioterapia externa convencional como para la radioterapia intraoperatoria. La planificación comprende la segmentación de tumor y órganos vulnerables y la estimación de la dosimetría. La segmentación de hígado funcional y la estimación volumétrica para planificación de la cirugía se estiman habitualmente a partir de imágenes de tomografía computarizada (TC). De igual modo, en la planificación de radioterapia, los objetivos de la radiación se delinean normalmente sobre TC. Sin embargo, los avances en las tecnologías de imagen de resonancia magnética (RM) están ofreciendo progresivamente ventajas adicionales. Por ejemplo, se ha visto que el ratio de detección de metástasis hepáticas es significativamente superior en RM con contraste Gd–EOB–DTPA que en TC. Por tanto, recientes estudios han destacado la importancia de combinar la información de TC y RM para conseguir el mayor nivel posible de precisión en radioterapia y para facilitar una descripción precisa de las lesiones del hígado. Con el objetivo de mejorar la planificación preoperatoria en ambos escenarios se precisa claramente de un algoritmo de registro no rígido de imagen. Sin embargo, la gran mayoría de sistemas comerciales solo proporcionan métodos de registro rígido. Las medidas de intensidad de voxel han demostrado ser criterios de similitud de imágenes robustos, y, entre ellas, la Información Mutua (IM) es siempre la primera elegida en registros multimodales. Sin embargo, uno de los principales problemas de la IM es la ausencia de información espacial y la asunción de que las relaciones estadísticas entre las imágenes son homogéneas a lo largo de su domino completo. La hipótesis de esta tesis es que la incorporación de información espacial de órganos al proceso de registro puede mejorar la robustez y calidad del mismo, beneficiándose de la disponibilidad de las segmentaciones clínicas. En este trabajo, se propone y valida un esquema de registro multimodal no rígido 3D usando una nueva métrica llamada Información Mutua Centrada en el Órgano (Organ-Focused Mutual Information metric (OF-MI)) y se compara con la formulación clásica de la Información Mutua. Esto permite mejorar los resultados del registro en áreas problemáticas incorporando información regional al criterio de similitud, beneficiándose de la disponibilidad real de segmentaciones en protocolos estándares clínicos, y permitiendo que la dependencia estadística entre las dos modalidades de imagen difiera entre órganos o regiones. El método propuesto se ha aplicado al registro de TC y RM con contraste Gd–EOB–DTPA así como al registro de imágenes de TC y MR para planificación de radioterapia intraoperatoria rectal. Adicionalmente, se ha desarrollado un algoritmo de apoyo de segmentación 3D basado en Level-Sets para la incorporación de la información de órgano en el registro. El algoritmo de segmentación se ha diseñado específicamente para la estimación volumétrica de hígado sano funcional y ha demostrado un buen funcionamiento en un conjunto de imágenes de TC abdominales. Los resultados muestran una mejora estadísticamente significativa de OF-MI comparada con la Información Mutua clásica en las medidas de calidad de los registros; tanto con datos simulados (p<0.001) como con datos reales en registro hepático de TC y RM con contraste Gd– EOB–DTPA y en registro para planificación de radioterapia rectal usando OF-MI multi-órgano (p<0.05). Adicionalmente, OF-MI presenta resultados más estables con menor dispersión que la Información Mutua y un comportamiento más robusto con respecto a cambios en la relación señal-ruido y a la variación de parámetros. La métrica OF-MI propuesta en esta tesis presenta siempre igual o mayor precisión que la clásica Información Mutua y consecuentemente puede ser una muy buena alternativa en aplicaciones donde la robustez del método y la facilidad en la elección de parámetros sean particularmente importantes. Abstract Pre-operative planning has become an essential task in complex surgeries and therapies, especially for those affecting soft tissue. One example where soft tissue preoperative planning is of high interest is liver surgery. It involves the accurate detection and identification of individual liver lesions and vessels as well as the proper functional liver segmentation and volume estimation. This process is very important because it determines whether the patient is a suitable candidate for surgical therapy and the type of procedure. Soft tissue radiation therapy is a second example where planning is required for both conventional external and intraoperative radiotherapy. It involves the segmentation of the tumor target and vulnerable organs and the estimation of the planned dose. Functional liver segmentations and volume estimations for surgery planning are commonly estimated from computed tomography (CT) images. Similarly, in radiation therapy planning, targets to be irradiated and healthy and vulnerable tissues to be protected from irradiation are commonly delineated on CT scans. However, developments in magnetic resonance imaging (MRI) technology are progressively offering advantages. For instance, the hepatic metastasis detection rate has been found to be significantly higher in Gd–EOB–DTPAenhanced MRI than in CT. Therefore, recent studies highlight the importance of combining the information from CT and MRI to achieve the highest level of accuracy in radiotherapy and to facilitate accurate liver lesion description. In order to improve those two soft tissue pre operative planning scenarios, an accurate nonrigid image registration algorithm is clearly required. However, the vast majority of commercial systems only provide rigid registration. Voxel intensity measures have been shown to be robust measures of image similarity, and among them, Mutual Information (MI) is always the first candidate in multimodal registrations. However, one of the main drawbacks of Mutual Information is the absence of spatial information and the assumption that statistical relationships between images are the same over the whole domain of the image. The hypothesis of the present thesis is that incorporating spatial organ information into the registration process may improve the registration robustness and quality, taking advantage of the clinical segmentations availability. In this work, a multimodal nonrigid 3D registration framework using a new Organ- Focused Mutual Information metric (OF-MI) is proposed, validated and compared to the classical formulation of the Mutual Information (MI). It allows improving registration results in problematic areas by adding regional information into the similitude criterion taking advantage of actual segmentations availability in standard clinical protocols and allowing the statistical dependence between the two modalities differ among organs or regions. The proposed method is applied to CT and T1 weighted delayed Gd–EOB–DTPA-enhanced MRI registration as well as to register CT and MRI images in rectal intraoperative radiotherapy planning. Additionally, a 3D support segmentation algorithm based on Level-Sets has been developed for the incorporation of the organ information into the registration. The segmentation algorithm has been specifically designed for the healthy and functional liver volume estimation demonstrating good performance in a set of abdominal CT studies. Results show a statistical significant improvement of registration quality measures with OF-MI compared to MI with both simulated data (p<0.001) and real data in liver applications registering CT and Gd–EOB–DTPA-enhanced MRI and in registration for rectal radiotherapy planning using multi-organ OF-MI (p<0.05). Additionally, OF-MI presents more stable results with smaller dispersion than MI and a more robust behavior with respect to SNR changes and parameters variation. The proposed OF-MI always presents equal or better accuracy than the classical MI and consequently can be a very convenient alternative within applications where the robustness of the method and the facility to choose the parameters are particularly important.
Resumo:
PURPOSE To evaluate image contrast and color setting on assessment of retinal structures and morphology in spectral-domain optical coherence tomography. METHODS Two hundred and forty-eight Spectralis spectral-domain optical coherence tomography B-scans of 62 patients were analyzed by 4 readers. B-scans were extracted in 4 settings: W + N = white background with black image at normal contrast 9; W + H = white background with black image at maximum contrast 16; B + N = black background with white image at normal contrast 12; B + H = black background with white image at maximum contrast 16. Readers analyzed the images to identify morphologic features. Interreader correlation was calculated. Differences between Fleiss-kappa correlation coefficients were examined using bootstrap method. Any setting with significantly higher correlation coefficient was deemed superior for evaluating specific features. RESULTS Correlation coefficients differed among settings. No single setting was superior for all respective spectral-domain optical coherence tomography parameters (P = 0.3773). Some variables showed no differences among settings. Hard exudates and subretinal fluid were best seen with B + H (κ = 0.46, P = 0.0237 and κ = 0.78, P = 0.002). Microaneurysms were best seen with W + N (κ = 0.56, P = 0.025). Vitreomacular interface, enhanced transmission signal, and epiretinal membrane were best identified using all color/contrast settings together (κ = 0.44, P = 0.042, κ = 0.57, P = 0.01, and κ = 0.62, P ≤ 0.0001). CONCLUSION Contrast and background affect the evaluation of retinal structures on spectral-domain optical coherence tomography images. No single setting was superior for all features, though certain changes were best seen with specific settings.
Resumo:
Current image database metadata schemas require users to adopt a specific text-based vocabulary. Text-based metadata is good for searching but not for browsing. Existing image-based search facilities, on the other hand, are highly specialised and so suffer similar problems. Wexelblat's semantic dimensional spatial visualisation schemas go some way towards addressing this problem by making both searching and browsing more accessible to the user in a single interface. But the question of how and what initial metadata to enter a database remains. Different people see different things in an image and will organise a collection in equally diverse ways. However, we can find some similarity across groups of users regardless of their reasoning. For example, a search on Amazon.com returns other products also, based on an averaging of how users navigate the database. In this paper, we report on applying this concept to a set of images for which we have visualised them using traditional methods and the Amazon.com method. We report on the findings of this comparative investigation in a case study setting involving a group of randomly selected participants. We conclude with the recommendation that in combination, the traditional and averaging methods would provide an enhancement to current database visualisation, searching, and browsing facilities.
Resumo:
Background: Summarised retinal vessel diameters are linked to systemic vascular pathology. Monochromatic images provide best contrast to measure vessel calibres. However, when obtaining images with a dual wavelength oximeter the red-free image can be extracted as the green channel information only which in turn will reduce the number of photographs taken at a given time. This will reduce patient exposure to the camera flash and could provide sufficient quality images to reliably measure vessel calibres. Methods: We obtained retinal images of one eye of 45 healthy participants. Central retinal arteriolar and central retinal venular equivalents (CRAE and CRVE, respectively) were measured using semi-automated software from two monochromatic images: one taken with a red-free filter and one extracted from the green channel of a dual wavelength oximetry image. Results: Participants were aged between 21 and 62 years, all were normotensive (SBP: 115 (12) mmHg; DBP: 72 (10) mmHg) and had normal intra-ocular pressures (12 (3) mmHg). Bland-Altman analysis revealed good agreement of CRAE and CRVE as obtained from both images (mean bias CRAE = 0.88; CRVE = 2.82). Conclusions: Summarised retinal vessel calibre measurements obtained from oximetry images are in good agreement to those obtained using red-free photographs.
Resumo:
In this paper a full analytic model for pause intensity (PI), a no-reference metric for video quality assessment, is presented. The model is built upon the video play out buffer behavior at the client side and also encompasses the characteristics of a TCP network. Video streaming via TCP produces impairments in play continuity, which are not typically reflected in current objective metrics such as PSNR and SSIM. Recently the buffer under run frequency/probability has been used to characterize the buffer behavior and as a measurement for performance optimization. But we show, using subjective testing, that under run frequency cannot reflect the viewers' quality of experience for TCP based streaming. We also demonstrate that PI is a comprehensive metric made up of a combination of phenomena observed in the play out buffer. The analytical model in this work is verified with simulations carried out on ns-2, showing that the two results are closely matched. The effectiveness of the PI metric has also been proved by subjective testing on a range of video clips, where PI values exhibit a good correlation with the viewers' opinion scores. © 2012 IEEE.
Resumo:
Social responsibility (SR) is becoming an increasingly significant component of many firms’ strategic planning decisions. Research has shown that consumers tend to reward socially responsible behavior. However, there has been little testing of the construct in the hospitality industry. Additionally, when other important variables that influence consumer brand loyalty are considered, will brand social responsibility image (BSRI) still play a significant role? This study investigates the importance of SR and its impact on brand loyalty, relative to product quality and service quality in the quick-service restaurant industry. The authors were also interested to learn whether BSRI impacted consumers' image of product and service quality. It was found that BSRI had a positive impact on brand loyalty, product quality, and service quality. However, product quality was a significantly stronger predictor of brand loyalty than BSRI. Where the vast majority of studies of SR have utilized scenario analysis of hypothetical firms, this study utilizes consumers' perceptions of a real-world firm.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.
Resumo:
L'image captioning è un task di machine learning che consiste nella generazione di una didascalia, o caption, che descriva le caratteristiche di un'immagine data in input. Questo può essere applicato, ad esempio, per descrivere in dettaglio i prodotti in vendita su un sito di e-commerce, migliorando l'accessibilità del sito web e permettendo un acquisto più consapevole ai clienti con difficoltà visive. La generazione di descrizioni accurate per gli articoli di moda online è importante non solo per migliorare le esperienze di acquisto dei clienti, ma anche per aumentare le vendite online. Oltre alla necessità di presentare correttamente gli attributi degli articoli, infatti, descrivere i propri prodotti con il giusto linguaggio può contribuire a catturare l'attenzione dei clienti. In questa tesi, ci poniamo l'obiettivo di sviluppare un sistema in grado di generare una caption che descriva in modo dettagliato l'immagine di un prodotto dell'industria della moda dato in input, sia esso un capo di vestiario o un qualche tipo di accessorio. A questo proposito, negli ultimi anni molti studi hanno proposto soluzioni basate su reti convoluzionali e LSTM. In questo progetto proponiamo invece un'architettura encoder-decoder, che utilizza il modello Vision Transformer per la codifica delle immagini e GPT-2 per la generazione dei testi. Studiamo inoltre come tecniche di deep metric learning applicate in end-to-end durante l'addestramento influenzino le metriche e la qualità delle caption generate dal nostro modello.
Resumo:
Purpose. To investigate misalignments (MAs) on retinal nerve fiber layer thickness (RNFLT) measurements obtained with Cirrus(©) SD-OCT. Methods. This was a retrospective, observational, cross-sectional study. Twenty-seven healthy and 29 glaucomatous eyes of 56 individuals with one normal exam and another showing MA were included. MAs were defined as an improper alignment of vertical vessels in the en face image. MAs were classified in complete MA (CMA) and partial MA (PMA), according to their site: 1 (superior, outside the measurement ring (MR)), 2 (superior, within MR), 3 (inferior, within MR), and 4 (inferior, outside MR). We compared RNFLT measurements of aligned versus misaligned exams in all 4 sectors, in the superior area (sectors 1 + 2), inferior area (sectors 3 + 4), and within the measurement ring (sectors 2 + 3). Results. RNFLT measurements at 12 clock-hour of eyes with MAs in the superior area (sectors 1 + 2) were significantly lower than those obtained in the same eyes without MAs (P = 0.043). No significant difference was found in other areas (sectors 1 + 2 + 3 + 4, sectors 3 + 4, and sectors 2 + 3). Conclusion. SD-OCT scans with superior MAs may present lower superior RNFLT measurements compared to aligned exams.
Resumo:
Caffeine induces loss of calcium and influences the normal development of bone. This study investigated the effects of coffee on bone metabolism in rats by biochemical measurement of calcium, bone densitometry and histometry. Male rats, born of female treated daily with coffee and with coffee intake since born, were anesthetized, subjected to extraction of the upper right incisor, and sacrificed 7, 21 and 42 days after surgery. Blood and urine samples were taken, and their maxilla radiographed and processed to obtain 5-µm-thick semi-serial sections stained with hematoxylin and eosin. The volume and bone quality were estimated using an image-analysis software. The results showed significantly greater amount of calcium in the plasma (9.40 ± 1.73 versus 9.80 ± 2.05 mg%) and urine (1.00 ± 0.50 versus 1.25 ± 0.70 mg/24 h) and significantly less amount in bone (90.0 ± 1.94 versus 86.0 ± 2.12 mg/mg bone), reduced bone mineral density (1.05 ± 0.11 versus 0.65 ± 0.15 mmAL), and lower amount of bone (76.19 ± 1.6 versus 53.41 ± 2.1 %) (ANOVA; p≤0.01) in animals treated with coffee sacrificed after 42 days. It may be concluded that coffee/caffeine intake caused serious adverse effects on calcium metabolism in rats, including increased levels of calcium in the urine and plasma, decreased bone mineral density and lower volume of bone, thus delaying the bone repair process.