973 resultados para Resonant damping
Resumo:
A new design for a compact electronically reconffgurable singlefeed dual frequency dual-polarized operation of a square-microstrip antenna capable of achieving tunable frequency ratios in the range 1.1 to 1.37 is proposed and experimentally studied. Varactor diodes inlegruted with the arms of the hexagonal slot and embedded in the square patch are used to tune the operating frequencies by applying reverse-bias voltage. The design has the advantage of size reduction up to 73.21% and 49.86% for the two resonant frequencies, respectively, as compared to standard rectangular patches. The antenna offers good bandwidth of 5.74% and 5.36% for the two operating frequencies. A highly simplified tuning circuitry without any transmission lines adds to the compactness of the design
Resumo:
The (Ba1-x Srx) (Nd1/2, Nb1/2) O3 ceramics have been prepared by the conventional ceramic route for different values of x. Addition of a small amount of CeO2(1 wt%) as a sintering aid increased the density of the samples. The structure and microstructure of the sintered samples are studied by X-ray diffraction and SEM methods. The dielectric properties of the samples are measured in the microwave frequency region as a function of composition. The dielectric constant decreases as x increases. The coefficient of thermal variation of resonant frequency decreases as the Sr content increases and goes to the negative side. The dielectric properties of (Ba1-x Srx) (Nd1/2, Nb1/2) O3 are in the range suitable for application as dielectric resonators in microwave circuits
Resumo:
Ceramic dielectric resonators in the BaO-RE2O3-TiO2 (RE = rare earth) system have been prepared by the conventional solid state ceramic route. The dielectric properties have been tailored by substitution of different rare earth oxides and by bismuth oxide addition. The dielectric constants increased with Bi addition whereas the 0 decreased. The temperature coefficient of the resonant frequency improved with bismuth addition
Resumo:
A microwave dielectric ceramic resonator based on BaCe2Ti5O15 and Ba5Nb4O15 have been prepared by conventional solid state ceramic route. The dielectric resonators (DRs) have high dielectric constant 32 and 40 for BaCe2Ti5O15 and Ba5Nb4O15, respectively. The whispering gallery mode (WGM) technique was employed for the accurate determination of the dielectric properties in the microwave frequency range. The BaCe2Ti5O15 and Ba5Nb4O15 have quality factors (Q X F) of 30,600 and 53,000 respectively. The quality factor is found to depend on the azimuthal mode numbers. The temperature coefficient of resonant frequency (Tr) of BaCe2Ti5O15 and Ba5Nb4O15 have been measured accurately using different resonant modes and are + 41 and + 78 ppm/K, respectively
Resumo:
A new microwave dielectric resonator Ba(Tb1/2Nb1/2)03 has been prepared and characterized in the microwave frequency region. 1 wt% CeO2 is used as additive to reduce the sintering temperature. The sintered samples were characterized by XRD, SEM and Raman spectroscopic methods. Microwave DR properties such as er, Q factor and temperature-coefficient of resonant frequency (Ti) have been measured using a HP 8510 B Network Analyzer. Cylindrical DRs of Ba(Tb1/2Nbi/2)03 showed high Er (~ 37), high Q (~3,200) and low Tf (~10 ppm /°C) at 4 GHz and hence are useful for practical applications
Resumo:
Microwave ceramic dielectric resonators (DRs) based on RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) have been prepared using the conventional solid -state ceramic route. The DR samples are characterized using XRD and SEM methods. The microwave dielectric properties are measured using resonant methods and a net work analyzer . The ceramics based on Ce, Pr, Nd, and Sin have dielectric constants in the range 32-54 and positive coefficient of thermal variation of resonant frequency (r,). The ceramics based on Gd, Tb, Dy, Y. and Yb have dielectric constants in the range 19-22 and negative Tf
Resumo:
Microwave ceramic dielectric materials Ca5Nb2TiO12 and Ca5Ta2TiO12 have been prepared by a conventional solid-state ceramic process. The structure was studied by X-ray diffraction and the dielectric properties were characterized at microwave frequencies. The ceramics posses a relatively high dielectric constant, very low dielectric loss (Q5 x f > 30000GHz) and small temperature variation of resonant frequency. These materials are potential candidates for dielectric resonator applications in microwave integrated circuits. [DOI: 10. 1 143/JJAP.41.3834]
Resumo:
The microwave dielectric properties of ZnAl2O4 spinels were investigated and their properties were tailored by adding different mole fractions of Ti02. The samples were synthesized using the mixed oxide rout.e. The phase purity and crystal structure were identified using X-ray diffraction technique. The sintered specimens were characterized in the microwave frequency range (3-13 GHz). The ZnA12O4 ceramics exhibited interesting dielectric properties (dielectric constant (e,.) = 8.5, unloaded quality factor (Q.) = 4590 at 12.27 GHz and temperature coefficient of resonant frequency (Tf) = -79 ppm/°C). Addition of Ti02 into the spinel improved its properties and the Tf approached zero for 0.83ZnAl2O4- 0.17TiO2• This temperature compensated composition has excellent microwave dielectric properties (Cr _ 12.67, Q, = 9950 at 10.075 GHz) which can be exploited for microwave substrate applications
Resumo:
Microwave dielectric resonators (DRs) based on Ba(B1,2Nbi/2)03 [B' = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In] complex perovskites have been prepared by conventional solid state ceramic route. The dielectric properties (relative permittivity, Er; quality factor, Q; and resonant frequency, rr) of the ceramics have been measured in the frequency range 4-6 GHz using resonance methods. The resonators have relatively high dielectric constant in the range 36-45, high quality factor and small temperature variation of resonant frequency. The dielectric properties are found to depend on the tolerance factor (t), ionic radius (r), and lattice parameter (ap)
Resumo:
A new compact microstrip antenna element is analyzed. The analysis can accurately predict the resonant frequency, input impedance, and radiation patterns. The predicted results are compared with experimental results and excellent agreement is observed . These antenna elements are more suitable in applications where limited antenna real estate is available
Resumo:
The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We report unusual spectral narrowing and laser emission from polymer thin films doped with Coumarin 540 dye. The laser emission from the polymer films is found to be highly dependent upon the excitation length of the medium. Even a short length of 1.75 mm of the dye doped film gave rise to laser emission with FWHM of 0.3 nm for a pump intensity of 825 kW cm−2. The partial reflections from the broad lateral surfaces of the free standing films provided the optical feedback for the laser emission. Occurrence of well-resolved equally spaced resonant modes confirmed the effect of a Fabry–Perot-like optical cavity between the film surfaces